# Water and Energy Conservation Plan Approved by the Board of Public Utitlities 7 December 2022 Mission: Provide safe and reliable utility services in an economically and environmentally sustainable fashion. ## <u>Acknowledgments</u> The 2022-2027 Water and Energy Conservation Plan was prepared by Abbey Hayward, Water and Energy Conservation Coordinator. The Los Alamos Department of Public Utilities appreciates the support and contributions of the following persons. ## Department of Public Utilities Staff Philo Shelton – Utilities Manager James Alarid – Deputy Utilities Manager/Engineering Jack Richardson – Deputy Utilities Manager/Gas, Water, Sewer Jordan Garcia – Deputy Utilities Manager/Electric Production Heather Garcia – Deputy Utilities Manager/Finance and Administration Stephen Marez – Interim Deputy Utilities Manager/Electric Distribution Clay Moseley – Engineering Project Manager Joann Gentry – Senior Management Analyst Catherine D'Anna – Public Relations Manager Ben Olbrich – Engineering Associate Jennifer Baca – Engineering Associate James Naranjo – GIS Systems Specialist Cornell Wright – Chair Steve Tobin – Vice Chair Stephen McLin – Member Eric Stromberg – Member Charlie Nakhleh – Member Carrie Walker – Outgoing Member Philo Shelton, III – Utilities Manager, Ex Officio Member Steven Lynne – County Manager, Ex Officio Member Denise Derkacs – Council Liaison Board of Public Utilities ## Additional Agencies and Orgs David Bruggeman – Los Alamos National Laboratory, Meteorologist Ken Waight III – Los Alamos National Laboratory, Meteorologist Elizabeth Watts – Pajarito Environmental Education Center, Educator ## **Executive Summary** The 2022-2027 Water and Energy Conservation Plan focuses on goals and objectives, as ranked by the BPU. There is a noticeable need for conservation efforts from both sides of utility services – the supply (DPU) and the demand (Customers) – to achieve these strategic goals. In 2013, the Board of Public Utilities (BPU) approved of six strategic goals to guide the Department of Public Utilities (DPU). The DPU Senior Management Team (SMT) then developed broad, long-term objectives detailing how the department would meet the strategic goals. Goals are reviewed annually by both BPU and DPU SMT and revised based on achievement(s) of objectives. The DPU strategic goals and objectives were most recently approved on September 15, 2021. This plan primarily focuses on Goal 5.0 – Achieve Environmental Sustainability, and has a supporting focus on Goal 6.0 – Develop and Strengthen Partnerships with Stakeholders Fiscal-year deliverables are established in this plan to make progress toward objectives and overall strategic goals. Deliverables in this plan were developed with suggestions from various community committees, DPU staff, and the BPU. Strategic objectives for Goal 5.0, in order of highest priority to lowest priority: - 1. Be a carbon neutral electric provider by 2040. - 2. Provide Class 1A effluent water in Los Alamos County. - 3. Reduce natural gas usage by 5% per capita per heating degree day by 2030 and support elimination of natural gas by 2070. - 4. Promote electric efficiency through targeted electric conservation programs. - 5. Reduce potable water use by 12% per capita per day by 2030. Strategic objective for Goal 6.0: 1. Communicate with stakeholders to strengthen existing partnerships and identify new potential mutually beneficial partnering opportunities. ## Table of Contents | Acknowledgments | 2 | |------------------------------------------------|----| | Executive Summary | | | Table of Contents | | | Abbreviations | | | Part I: Background Information and Data | 7 | | Introduction | 8 | | Local Conditions | 10 | | Geography | 11 | | Demographics | 11 | | Climate | 14 | | Water Resources Overview | 16 | | Electrical Resources Overview | 20 | | Gas Resources Overview | 23 | | Assessing Supplier Performance | 24 | | Part II: Water and Energy Conservation Program | 35 | | Appendices | 58 | | | | ## **Abbreviations** BPU Board of Public Utilities DPU Department of Public Utilities SMT Senior Management Team DOE Department of Energy WAPA Western Area Power Administration NMOSE New Mexico Office of the State Engineer LANL Los Alamos National Laboratory ECA Electric Coordination Agreement IRP Integrated Resource Plan PEEC Pajarito Environmental Education Center ESB Environmental Sustainability Board LARES Los Alamos Resiliency, Energy, and Sustainability (Task Force) USDM US Drought Monitor LRWS Long-Range Water Supply WWTP Wastewater Treatment Plant PNM Public Service Company of New Mexico SAIDI System Average Interruption Duration Index CFPP Carbon Free Power Project GPCD Gallons Per Capita Per Day SFR Single Family Residence MFR Multi-Family Residence AWWA American Water Works Association SJGS San Juan Generating Station **HDD** Heating Degree Day WRRF Water Resource Reclamation Facility **UAMPS** Utah Associated Municipal Power Systems ## Part I Background Information and Data of Los Alamos County and Its Utilities ## Introduction ## Purpose The Water and Energy Conservation Plan is being updated to best identify and provide target measures for conservation of critical resources needed for a community to thrive in the high desert of New Mexico. In the face of a changing climate, there is increasing pressure for the Los Alamos DPU to provide reliable and efficient sources for its utilities. A hotter and drier climate will strain grid systems and water supplies. There is also increasing pressure on consumers to conserve and efficiently use these same resources to accommodate a growing community and to ensure resources will last. The DPU operates the county-owned electric, gas, water, and wastewater systems servicing customers, including residents, businesses, schools, and local government facilities. The DPU has provided the community with these services for more than 50 years. Publicly held, DPU is directly accountable to the citizens of Los Alamos County through the local BPU. This document serves as an evolving plan to meet the following objectives : - Support DPU's mission, vision, and long-term strategic goals. - Develop cost-effective conservation programs to move the community toward defined conservation goals. - Establish consumption baselines for water, electricity, and gas representative of designated customer classes. - Adopt appropriate and reasonable conservation goals representative of community desires. - Develop an implementation plan and measurement metrics of conservation efforts. The Water and Energy Conservation Plan focuses on the planning period of 2022-2027. However, this document will be reviewed and updated biannually to accommodate successes and unforeseen changes to DPU resource supply and consumer needs. ## Requirements of Plan This plan serves to meet several requirements of utility operations. The first is to fulfill a federal regulatory requirement as part of Los Alamos County's section of the joint Integrated Resource Plan (IRP) with the Department of Energy (DOE). This requires the development and implementation of a water and energy conservation plan that addresses both the supply-side (DPU) and demand-side (customer) of water and energy conservation efforts, which is then submitted to the Western Area Power Administration (WAPA) annually. The second requirement, which is filed with the New Mexico Office of the State Engineer (NMOSE), is conditional pending current projects. ## **Partners** ## Los Alamos National Laboratory, Department of Energy Conservation efforts in this plan are not directed toward the DOE or the Los Alamos National Laboratory (LANL). LANL is a facility that falls under the requirements of DOE, neither of which are under the jurisdiction of DPU. There is a contract to supply DOE with water for LANL and DPU is a partner with DOE in the Electric Coordination Agreement (ECA). Los Alamos County and DOE also have a joint IRP, which guides the ECA. LANL also has a site-wide Water Conservation Program Plan. DPU and LANL will coordinate and communicate conservation efforts and support long-term conservation goals. ## **Pajarito Environmental Education Center** DPU partners with Pajarito Environmental Education Center (PEEC) on educational outreach efforts in a contracted format. PEEC is very involved with the schools in the county, in addition to its own programming at the Nature Center. DPU and PEEC agree on annual task orders that promote evolving conservation foci for the schools and community members. ## Los Alamos Environmental Sustainability Board The Los Alamos Environmental Sustainability Board (ESB) updates the County's Environmental Sustainability Plan. While DPU and the ESB support one another's plans, this Water and Energy Conservation Plan focuses specifically on the commodities provided by DPU. The Environmental Sustainability Plan goes beyond water and energy usage by establishing goals in other areas crucial to creating a more sustainable community. ## **Public Input** A "Conservation Plan Update Committee" was formed by DPU in early 2020 to begin to address and provide recommendations to the existing Water and Energy Conservation Plan. However, two factors overshadowed the extent of the group's efforts. The first was the onset of the COVID-19 pandemic which slowed the group's first progression as the scope of the pandemic was unknown. The second factor was the formation of the Los Alamos Resiliency, Energy, and Sustainability (LARES) task force by Los Alamos County Council in January 2021. The LARES task force was assembled to address very similar recommendations that the update committee was working toward. Regarding the suggestions and recommendations from each of these groups, it is important to note: the recommendations from the Plan Update Committee were considered as this committee was specifically formed by the DPU for this very purpose. The LARES Final Report recommendations are not incorporated into this plan update because they go beyond the scope of DPU's responsibilities and reach. However, many of the recommendations will be supported by and potentially partnered with DPU, as efforts align. Additional updates to this plan will incorporate suggestions, pending BPU approval, stemming from the "Voice of the Customer" survey created by. This survey is an opportunity for DPU to better understand its customers' perceptions and wants of the DPU. ## Local Conditions Los Alamos County is located in northern New Mexico and comprises the communities of Los Alamos and White Rock. Nestled in a region known as the Pajarito Plateau, the service area ranges in elevation from 6,365 feet in White Rock up to 7,320 feet in the Los Alamos townsite. The population for the county was 19,419 per the 2020 Census. The County is surrounded by various Pueblos including San Ildefonso and Santa Clara, and by protected areas including the Santa Fe National Forest and Bandelier National Monument. Modern-day Los Alamos was incorporated in 1968, after two decades of existing as the Manhattan Project's Site Y. Prior to 1963, no land was privately owned and three federal agencies – the Atomic Energy Commission, the US Forest Service, and the National Park Service – owned and managed all land. ## Geographical Considerations Geologic Map of Los Alamos townsite. Basic interpretation: green designates rhyodacite lava flows; tan designates Bandelier Tuff; yellow, pink, and red designate sedimentary deposits. Initially chosen for its relative inaccessibility, Los Alamos County is spread across several flat mesas separated by steep canyons. The geology is primarily volcanic, consisting of Upper Bandelier Tuff, basalts, and rhyodacite lava flows, with some areas of sedimentary deposits from alluvial flows and stream deposits as the Rio Grande and previous rivers transformed over time. The geological deposits impact utility placement. For example, the basalts and certain areas of the Bandelier Tuff are very hard and restrict water well, pipeline (water, gas, or sewer), and buried electricity infrastructure placement. There is an area of White Rock that is unable to be connected to the municipal sewer and gas systems because the geology prevents the infrastructure. Other considerations include areas prone to rockfalls, such as with the rhyodacite (green) flow, and placing utility sources here (maintenance costs, reliability issues, etc.). Geologic Map of White Rock. Basic interpretation: hot pink designates Bandelier Tuff; dusty pink designates basalts; dotted cream designates interspersed sedimentary deposits with basalts; most other classifications represent sedimentary deposits. ## Local Conditions ## Demographics and Projections ## **Population** According to the US Census, the population for Los Alamos County increased by nearly 1,500 people between 2010 and 2020. The current population estimate (as of July 2021) is 19,330 for the county. Because of the geographical limitations of Los Alamos County, population growth is constrained until new housing developments are constructed in White Rock, new apartment buildings are constructed where defunct buildings stand in Los Alamos, or unoccupied homes become available for occupancy (renovated or sold). Los Alamos is a destination for tourists, and the popularity of vacation rentals, such as Airbnb and VRBO, increases the population of the county by an unknown number as these visitors utilize utility resources. LANL is the largest employer in the county and in northern New Mexico. Total employment, including students and contract labor, was 13,512 at the end of fiscal year 2021. LANL is planning to hire an additional 2000 employees in fiscal year 2022. Around 40% of these employees live in Los Alamos County. Population estimates vary depending on the method and predictor. Los Alamos estimates can go off-track quickly depending on the employment goals of LANL. The table below shows population projections from the Geospatial and Population Studies Department at the University of New Mexico. These projections are based on 2010 Census data and migration trends and have not been updated to reflect 2020 Census data. Compare these estimates to the projections in the other table below. | July | 2010 | July 2020 | 2025 | 2030 | 2035 | 2040 | |------|-------|-----------|--------|--------|--------|--------| | 17 | 7,935 | 18,765 | 19,164 | 19,501 | 19,753 | 19,941 | Geospatial and Population Studies Department at the University of New Mexico population projections based on 2010 Census data and migration trends. The Long-Range Water Supply Plan (LRWS Plan), updated in 2017, has two scenarios for projected water demand based on a different set of population projections. These low- and high-projection cases are based on population estimates prepared for the 2016 update to the State of New Mexico's 16 regional water plans. Population differences between Los Alamos townsite and White Rock show that Los Alamos is more than twice the size of White Rock. Per the 2020 Census, White Rock has a population of 5,852 while Los Alamos is 13,179. | | Population Projection | | | | | | | |------|-----------------------|--------|--|--|--|--|--| | Year | Low | High | | | | | | | 2020 | 17,988 | 20,000 | | | | | | | 2030 | 17,789 | 20,812 | | | | | | | 2040 | 17,123 | 21,447 | | | | | | | 2050 | 16,480 | 21,874 | | | | | | | 2060 | 15,863 | 22,092 | | | | | | Population projections from LRWS Plan based on estimates for the 2016 version of the State of New Mexico's 16 regional water plans. Created by the University of New Mexico Bureau of Business & Economic Research, this "population pyramid" is based on 2020 Census Data. The simplest breakdown of this data indicates that Los Alamos County is 24% child-aged (0-19 years), 58% working-aged (20-64 years), and 18% senior-aged (65+ years). The median household income, in 2020 dollars for the period of 2016-2020, is slightly over \$119,000 for Los Alamos County. The percentage of persons in poverty is 3.3% for the county. The primary language is English; however, nearly 14% of the population speaks another language (at least 20 different ones) including Spanish and several Asian and Pacific Island Languages. ## Housing Most homes were built before the Energy Policy Act of 1992, which increased the energy efficiency of buildings including the required use of low-flow toilets, urinals, faucets, and showerheads as replacement installations and in new-builds. US Census Bureau compiles housing data in its Table DP04: Selected Housing Characteristics. The latest dataset available for Los Alamos is the 2019: American Community Survey 5-Year Estimates. It can be assumed from this information that around 7,000 homes in Los Alamos County were built prior to 1994, when enforcement of the Energy Policy Act of 1992 began. It is unknown how many of these 7,000 homes have done upgrades or retrofits. This provides a potentially large customer base to target with specific conservation efforts like improved appliance efficiency, insulation, and weather stripping. Landscape preferences vary throughout the county, from extensive lawns to complete xeriscaped yards. Precise numbers of each are unknown but increased water usage during the summer months is indicative of landscape maintenance. ## Total Housing Units: 8,384 Pre-1940: 24 1940-1949: 621 1950-1959: 1360 1570 1970-1979: 1875 1980-1989: 1039 2000-2009: After 2009: 1064 123 ## Local Conditions ## Climate Trends All weather data comes from the LANL Weather Machine, which maintains many weather stations around Los Alamos County. LANL's meteorologists on staff provided data in the following charts. These charts reveal that Los Alamos and White Rock have their own distinct climate systems. Los Alamos is at a higher elevation – around 1000 feet higher – and closer to the Jemez Mountains than White Rock. Therefore, Los Alamos has a wetter, cooler climate overall. LANL meteorologists recently released the "Los Alamos Climatology 2021 Update," which provides climate statistics for the 30-year, 1991-2020 averaging period. More in-depth information regarding the climate of Los Alamos County can be found in their report. Right: Monthly total precipitation data for Los Alamos (blue solid) and White Rock (red dot) from January 2011 to December 2021. A complete monthly total precipitation chart (1991-2021) can be found in Appendix 2. Below: Precipitation history for Los Alamos County (1924-2020) taken from the LANL Climatology 2021 Update, Figure 34. Prior to 2015, more regular cycles of precipitation associated with the monsoon season (July – September) are visible. After 2015, the precipitation cycle appears more erratic for both Los Alamos and White Rock. The area seems to be experiencing longer periods of no precipitation with intense bursts of heavy precipitation. Regarding average monthly temperature, an important note is that the maximum summer temperatures for both communities are creeping toward an average of 90°F for a couple of months, when historically only a few days of the year would reach this temperature. And, although Los Alamos is at a higher altitude, White Rock has lower minimum temperatures when the cold air drains off the Jemez Mountains at night. The US Drought Monitor (USDM) releases drought maps every Thursday. These maps are based on several numeric inputs, index readings, and satellite-based assessments. It's important to remember that the USDM is not a forecast, but it is a tool to use to trigger drought responses and emphasize the need for conservation efforts. Top: Average monthly temperatures for Los Alamos (minimum temp is blue dot; maximum temp is red big dash) and White Rock (minimum temp is green solid; maximum temp is yellow small dash). Middle: Temperature history for Los Alamos (1924-2020) taken from the LANL Climatology 2021 Update, Figure 29. Right: An example of a USDM Map released June 21, 2022. An interesting note regarding this map: New Mexico recieved rain in the week prior to this map and a majority of the state remains in the worst drought condition category. ## Water Resources and Supply Overview ## Water Rights The DPU provides water service to the users in Los Alamos County, at LANL, and to Bandelier National Monument. DPU began operating the water system in 1998; however, it wasn't until 2001 that ownership and most of the water rights (70%) were transferred from the DOE. The DPU leases the remaining water rights owned by DOE. This agreement was renewed for an additional 10 years in Fiscal Year 2021. Within this agreement, there is no limit to the amount of water that DPU must provide to LANL. LANL's usage has yet to exceed any designated water rights, and it maintains a site-wide Water Conservation Program Plan. Water rights in use for Los Alamos County total 5,541.3 acre-feet per year and are comprised of a combined right of groundwater and surface water. From the 1960s to the present, total water consumption hovers between 4,000 and 5,000 acre-feet per year. ## PERCENTAGE OF WATER RIGHTS UTILIZED Water rights usage data is tabulated from each water production well meter. ## **Demand Projections** Daniel B. Stephens and Associates, Inc., completed an update to the Long-Range Water Supply (LRWS) Plan and it was approved by the BPU in January 2018. The LRWS Plan focuses on long-term water planning, and projects two possible outcomes as part of its demand forecast. This table shows the projected demands with and without LANL usage based on low (decreasing population) and high (increasing population) estimates. | Year | Population | Projection | | d Demand<br>ft/yr) | Total Projected Demand<br>includes LANL (ac-ft/yr | | | |------|------------|------------|-------|--------------------|---------------------------------------------------|-------|--| | | Low | High | Low | High | Low | High | | | 2020 | 17,988 | 20,000 | 2,716 | 3,020 | 3,634 | 3,938 | | | 2030 | 17,789 | 20,812 | 2,686 | 3,143 | 4,191 | 4,648 | | | 2040 | 17,123 | 21,447 | 2,586 | 3,239 | 4,091 | 4,744 | | | 2050 | 16,480 | 21,874 | 2,488 | 3,303 | 3,993 | 4,808 | | | 2060 | 15,863 | 22,092 | 2,395 | 3,336 | 3,900 | 4,841 | | ### Potential Concerns Los Alamos County's water rights are junior to several downstream senior water rights holders. With additional growth (population, tourists, and work force) in Los Alamos County and other areas and requirements to sustain endangered species and wetland habitats, there is the potential that protection of the senior water rights could impact long-term allocation of Los Alamos County's water rights, even over the next 40 years. Additional water rights concerns include Rio Grande Offset Requirements and the difficulty in finding willing sellers of water rights, and the potential impact of the Navajo Water Rights Approximate location of chromium plum. Located southest of Los Alamos townsite and northwest of White Rock. Settlement provisions on the San Juan-Chama Project water rights. The risk of contamination of the current and/ or future groundwater supply for Los Alamos County and its service members should be acknowledged. The DPU protects drinking water sources with sound well placement and construction as well as maintaining top-performing system operations and management. The DOE is currently assessing the extent of and remediation measures for a hexavalent chromium plume that is present in the regional aquifer. The impacts of a changing climate are one of the biggest factors out of the control of DPU LANL Chromitem Florre DOS 1 DOS 2 DOS 2 DOS 3 and DOE. Increasing temperatures and decreasing precipitation totals will strain existing water resources. Evaporation of surface water sources and lower recharge rates of groundwater resources need to be realized as possible threats to water availability for Los Alamos County. "An application for permit to change an existing water right was filed jointly by DOE and the LACWU [DPU] in May 2016, in support of the chromium interim measure project that will run through December 2023...The application requests a change in purpose of use for groundwater to add groundwater remediation and additional groundwater points of diversion to be used for control and future characterization of hexavalent chromium-contaminated groundwater...The projections assume that the water supply remains available in terms of water rights and contamination, and do not take into account the possibility of treating and using contaminated groundwater." -LRWS Plan ## Water Resources and Supply Overview ## Water Sources Los Alamos County is currently supplied by 12 active wells that range in depth from 1,519 feet to 3,092 feet. All water is drawn from the regional aquifer beneath the Pajarito Plateau. Currently, groundwater supplies potable water from the Guaje, Pajarito, and Otowi well fields. An additional well has been drilled in the Otowi well field and will be complete in late 2022, pending material availability and supply chain issues. This well, Otowi 2, reaches a depth of 2,520 feet and will be one of DPU's largest water-producing wells, pumping between 1,200-1,300 gallons per minute. While the County's water rights of 5,541.3 acrefeet include both surface water and groundwater, the DPU supplies its potable water for customers solely from groundwater sources. Surface water sources are primarily used for irrigation purposes and as emergency supplies for wildfires. Surface water sources include: Water Canyon Gallery Spring, Los Alamos Reservoir, Guaje Reservoir, Camp May, and the unused contracted rights in the San Juan-Chama Project. ### Los Alamos Reservoir Repair The Los Alamos Reservoir was severely damaged after the Cerro Grande Fire in 2000 and again by the Las Conchas Fire in 2011. The reservoir has been impacted by siltation and transmission pipeline breaks because of intense and catastrophic flooding events ever since. DPU has been awarded a grant from the River Stewardship Program to help address the erosion in this watershed impacting the stream and reservoir quality and to stabilize the access pipeline and roadway. The project will clear debris and use natural channel design to restore the water channel and floodplain above and below the reservoir. It is expected to begin in the summer of 2023. ### San Juan-Chama Project The San Juan-Chama Project, in the Colorado River Basin, is geographically separate from the current regional aquifer DPU utilizes for potable water. Should DPU decide to implement access to this project, this source water would help to diversify Los Alamos County's water supply. The County is contracted for 1,200 acre-feet of the San Juan-Chama Project with the US Department of the Interior Bureau of Reclamation. More information about the development of this water right can be found in Section 4.2.1 of the LRWS Plan. ### Reclaimed Water Wastewater is currently treated at the Los Alamos Wastewater Treatment Plant (WWTP) and the effluent is used to maintain a wetland downstream of the WWTP and to irrigate four different sites in Los Alamos: North Mesa Soccer Field, North Mesa Ball Fields, and Los Alamos County Golf Course. Effluent from the White Rock WWTP is used to irrigate Overlook Park. Per the Fiscal Year 2021 DPU Annual Report, 116 million gallons of reclaimed water was used to irrigate green spaces throughout the county. Los Alamos' original golf course began using reclaimed water in 1945 (the first in the nation to do so) and White Rock began irrigating Overlook Park with reclaimed water in 1985. DPU continues to evaluate the expansion of reclaimed water use per the guidance of the Los Alamos County Non-Potable Water System Master Plan, last updated in 2013. The Non-Potable Water System Master Plan was prepared to optimize the use of effluent and surface water for irrigation purposes. This master plan helps DPU review existing infrastructure, evaluate Locations of non-potable/reclaimed water irrigation sites in White Rock (top) and Los Alamos townsite (bottom). Figures taken from the Non-Potable Water System Master Plan. existing and potential future irrigated sites, develop a realistic demand for system build-out, and recommend system improvements. This resource continues to serve as a planning tool for non-potable projects, and, as such, there is no timeline to update the Non-Potable Water System document. Expansion of the non-potable system is supported by loan/grant funding from the New Mexico Finance Authority Water Trust Board, which is applied for annually. ## Electrical Resources and Supply Overview ## System Components The DPU and the DOE are joined in an ECA which allows each entity to combine resources for the Los Alamos Power Pool. The Power Pool purchases, sells, and schedules the power requirements for Los Alamos County customers and LANL. The current ECA expires in 2025 and both parties are working on negotiations for a post-2025 ECA. Los Alamos County owns and operates the electric distribution system in Los Alamos and White Rock, and manages the Power Pool resources 24 hours a day, 365 days a year. However, the County does not own any transmission systems to get the electricity to its customers. The Public Service Company of New Mexico (PNM) provides the transmission service into Los Alamos County. DOE owns the transmission system within the county that serves both LANL and Los Alamos County. The Power Pool utilizes PNM's network to bring energy to the DOE system, and then the DOE's system feeds the County's switching stations, which distribute power to DPU customers. County assets of the Power Pool: - San Juan Generating Station Unit 4 (coal, 36 megawatts) - Laramie River Station entitlement (coal, 10 megawatts) - El Vado hydroelectric facility (hydropower, 8 megawatts) - Abiquiu hydroelectric facility (hydropower, 17 megawatts) - Los Alamos Western Area Power Administration entitlement (hydropower, 1 megawatt) - East Jemez Landfill photovoltaic array (solar, 1 megawatt) - County transmission agreements - County purchased power contracts - UNIPER, 2 agreements (wind and solar, 15-25 megawatts) \*note: active as of 2022, and not reflected in above chart ## **Demand Projections** The Los Alamos County distribution system consists of the townsite substations, which provide power to approximately 7,507 customers and LANL in Los Alamos, and the White Rock substation, which provides power to approximately 2.815 customers. The IRP provides load forecasts and demand projections based on several inputs of the ECA partners. This plan recognizes that Los Alamos County load and demand projections are driven by population growth and commercial activity. The LANL load is driven by mission change and pace of operation. The Power Pool will also need to accommodate additional electrical needs for new housing units in White Rock and apartment complexes in Los Alamos townsite. The pace of electrical vehicle adoption and additional electrification as people switch away from natural gas also need to be considered. ### **Potential Concerns** Providing a reliable source of electricity is the overarching concern for both electrical production and electrical distribution. As more and more electrical providers switch to renewable sources, there may be periods where there aren't enough renewable sources to match load. This issue is exacerbated by the slow construction of renewable sources because of material Los Alamos Power Pool Hourly Demand Summary, 2015-2020. Taken from the 2022 IRP, Exhibit 48. availability and required labor needs. Going forward, production sources need to be balanced: bringing renewable sources online as fossil fuel sources are phased out. Transmission line concerns affect both production and distribution. Existing transmission lines can only carry so much electricity. As conversions from gas to electric continue, the demand for more electricity will increase, putting strain on existing lines and forcing the need for additional transmission lines from electrical production resources. Sourcing transformers is a concern on the distribution-side of transmission lines. DPU is in the process of replacing transformers and, like most supply-demand issues currently, is having to delay the progress of this project because of the slow pace of the manufacture of transformers. Another potential concern that can be alleviated with planning is the maintenance, both planned and unforeseen, that takes power production sources offline for a given period of time. While the DPU has a goal response time of 60 minutes, known as SAIDI (System Average Interruption Duration Index), the occasional issue can take longer to resolve. ## Electrical Resources and Supply Overview ## Renewables One of the strategic objectives approved by the BPU is for the DPU to become a carbon neutral electric provider by 2040. Current electric resources utilized by the DPU for the Power Pool and considered renewable/clean energy are the El Vado and Abiquiu hydroelectric facilities, the hydropower provided from the WAPA entitlement, and the East Jemez Landfill photovoltaic array. The energy supplied to Los Alamos County that comes from these renewable resources hovers around 20% annually. Recently, the DPU entered into two power purchase agreements with Uniper Global Commodities to bring solar and wind energy to Los Alamos County. The first began delivering energy in January 2022. This agreement is for 15 MW of wind and solar energy over 15 years with a subscribed output of 76% renewable energy. The DPU has first right of refusal for any excess megawatts generated from this agreement. The wind portion of this agreement is online, but the solar is delayed due to material shortages. The second agreement is for 25MW and will be delivered from October 2022 to June 2025. The 25 MW agreement will have a subscription output of 26% renewable energy. WAPA contracted resources are subject to having an updated conservation plan as well as a current IRP agreement. The IRP agreement, a planning tool to guide the ECA in providing for future resources, was negotiated and extended until the year 2057. An additional Power Pool resource being pursued, and discussed more thoroughly in Part II, is: Carbon Free Power Project (CFPP): a power generation facility that utilizes small modular reactor technology. There is potential to receive up to 8.3 MW from this resource. The facility is scheduled to be operational by 2030 and will be sited at the Idaho National Laboratory. ## Non-Renewables With the goal to become a carbon-neutral provider, the DPU is beginning to phase out its coal-powered resources. The DPU is a partial owner in the San Juan Generating Station 4 near Farmington, NM. This station was planned to sunset at the end of June 2022. However, with the unavoidable delay in getting replacement renewable resources online and the timing of a power purchase agreement gap (Uniper coming online in October 2022), the BPU proposed to extend the San Juan agreement through the end of September 2022. The DPU has a life-of-plant entitlement with the Laramie River Station in Wheatland, WY, with plant closure slated for 2040-2042. Opportunities continue to be sought for the DPU to capitalize on its long-term agreement by potentially swapping for renewable resources. In parallel, a negotiation for a hard exit, if an option exists, will be pursued in accordance with the BPU adopted goal. ## Gas Resources and Supply Overview The DPU owns and operates its natural gas distribution system. The regional transmission pipelines are owned and operated by New Mexico Gas Company. There are two sources of supply available for Los Alamos County. From these regional lines, two stations supply Los Alamos townsite and one station supplies White Rock. Fiscal year 2022 has an average customer base of 7,263 residential units and 430 commercial, municipal, or educational units. These numbers fluctuate for any number of reasons, including households moving, seasonal residents, and businesses changing spaces. ## Demand Projections The DPU has an ultimate goal of eliminating natural gas use by 2070. Demand projections include the reduction of natural gas usage each year. While simple in concept, achieving these reduced projections in practice may be far more challenging. Gas consumption is only predictable at a base level—the amount customers might use to heat water and run appliances. Other uses, primarily heating buildings, are dependent on weather patterns and much less predictable. What may look like a solid success in one year could be followed by failure to meet the reduction in the next due to uncontrollable weather-related circumstances. ### Potential Concerns There are few concerns with the gas supply specifically. Locally, freezing isn't an issue, and the risk of earthquakes damaging pipes is of low concern. However, supply issues from regional sources and systems can impact the Los Alamos system. For example, the failure of gas operations during the deep freeze in Texas in February 2021 caused a regional rate spike. Another concern is related to the long-term elimination goal. As customers phase out natural gas usage in their homes, eventually gas rates will need to increase significantly for those still using natural gas to cover the DPU's cost of gas. This won't be obvious in the beginning, but it will cost the same to operate the natural gas system for 400 customers as it does 8000 customers. The DPU will need to plan for this transition. Monthly average heating and cooling degree day (1991-2020). Taken from the LANL Climatology 2021 Update, Figure 5. ## Assessing Supplier Performance: Water Water demand and consumption is tracked using a variety of metrics. All of the metrics rely on the base data pulled from the utility billing system, Munis. ## **Leak Detection Surveys** A system leak detection survey is conducted on a 5-year cycle. 20% of the total system is targeted annually. Each year a different part of the system is surveyed, and the leaks are classified into three categories: Class 1-3. Class 1 leaks are deemed hazardous and could result in damage to the utilities. Class 2 leaks display water losses significant enough to be monitored on a regular repair schedule. Class 1 and 2 leaks are repaired immediately. Class 3 leaks are relatively small and are repaired as workloads permit. ## Gallons Per Capita Per Day The NMOSE's Gallons Per Capita Per Day (GPCD) is a spreadsheet calculator completed and submitted annually to the NMOSE as a compliance piece for Los Alamos County water rights. This spreadsheet will be used to compare the County's water consumption with other communities in the southwest to help develop water conservation goals. The GPCD charts in this plan report on the years 2016 to 2021. Household data is pulled from the 2010 Census. 2020 Census data was not released at the time of the 2021 GPCD update. Average household size for the reporting period is determined, by Census data, to be 2.33 persons. The populations for Single Family Residence (SFR) and Multi-Family Residence (MFR) are calculated using average household size multiplied by the number of connections associated with each customer category. GPCD for each category is formulated by dividing class consumption by class population. All values are auto-calculated in the NMOSE GPCD spreadsheet. Lower Left: Los Alamos County total system annual Gallons Per Capita Per Day broken down into customer class and Non-Revenue water. This page: Charts compiled from the NMOSE GPCD calculator. THe top chart graphs the GPCD of Single Family Residences while the middle graphs the GPCD of Multi-Family Residences. The bottom chart graphs all commercial, municipal, and educational facility (refered to as "Industrial, Commercial, Institutional by the calculator) GPCD. These values are for all of Los Alamos County and are not broken into community. More information on the difference between the two communities can be found in Part II, Goal 5. > Monthly total system GPCD for 2016 - 2021 can be found in Appendix 1 of this plan. ## Assessing Supplier Performance: Water ### Indoor GPCD Using the GPCD calculator, indoor and outdoor water usage can be estimated. Indoor water consumption is calculated by averaging the three months - of the four winter months between December and March - with the lowest water use. Indoor GPCD is graphed with the annual GPCD for these two customer classes. ### **Outdoor GPCD** While reducing indoor water use is a common water conservation strategy, outdoor water use is a significant percentage of total water usage. This is expanded more in Part II, Goal 5 of the conservation program. Outdoor GPCD is calculated by subtracting the average monthly indoor GPCD from the total monthly GPCD. The charts below provide a detailed monthly breakdown of GPCD during peak water-use months (May to September). It is important to notice the difference in scales between these two charts. Alternatively this line graph displays outdoor water usage in gallons per household instead of GPCD because outdoor water usage is irrelevant of the number of household occupants. MFR Outdoor GPCD ### **Outdoor Water Usage** | | JUL | AUG | SEP | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | |------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|--------| | Los Alamos | 8,167 | 7,138 | 8,227 | 7,362 | 4,963 | 3,815 | 4,285 | 3,833 | 2,861 | 3,575 | 5,914 | 8,534 | | White Rock | 10,182 | 13,189 | 12,246 | 11,332 | 6,447 | 4,410 | 5,014 | 2,954 | 3,565 | 4,378 | 8,252 | 11,078 | FY2019-FY2021 average monthly water consumption per household, in gallons, for residential customer class. Note the significant increase of water usage for White Rock during peak water months (May through September). All customer classes can take advantage of outdoor conservation measures. However, the "residential" customer class is likely to see significant benefits, especially when it comes to outdoor water use. Because there is typically only one meter servicing a household unit, outdoor water use can only be estimated and assumed. The following pie charts are 2019-2021 averages of Residential Water Usage. Peak season is May through September. Non-peak season in October through April. The DPU has a tiered water rate and there is a significant shift in usage between peak and non-peak seasons. In this dataset, Tier 3 consumers represent 18% of households using 52% of the total water during peak season compared to Tier 3 representing 5% of households using 24% of total water during the non-peak season. Outdoor spaces like lawns and gardens use a lot of water and is a priority target area for reducing potable water consumption. ## Assessing Supplier Performance: Water ### **Utilities Water Audit** The American Water Works Association (AWWA) Water Audit is a requirement of the NMOSE to standardize a method of auditing water utilities when calculating the percentage of non-revenue water. The AWWA Water Audit tracks water from the point of withdrawal, or treatment, all the way through to the point of delivery to the customer. Two of the important figures this audit helps to identify, which the DPU can then work to reduce, are apparent losses and real losses. Apparent losses include all types of inaccuracies associated with metering, data handling errors, and theft of water. Real losses are breaks or leaks in the water system on the supplier side on to the point of customer consumption. Below are results from the 2020 and 2021 (inside red box) audits. The Water Audit Data Validity Score (a measure of the reliability of available data provided in the audit) is the same for both years. "Apparent Losses" decreased from 2020 to 2021 and this is in part to the installation of the advanced metering system on all water meters, which allow for leaks to be detected sooner and meters to provide more accurate readings. Additional guidance is provided within the AWWA Water Audit to decrease the DPU's non-revenue water and subsequent cost to the system, presented in the table below. | Audit data collection | Short-term loss control | Long-term loss control | Target-setting | Benchmarking | |----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------| | Refine data collection practices and establish as routine business process | Refine, enhance, or expand ongoing programs based upon economic justification | Conduct detailed planning, budgeting, and launch of comprehensive improvements for metering, billing, or infrastructure managment | Establish mid-range (5 year<br>horizon) apparent and real<br>loss reduction goals | Performance Benchmarking -Infrastructure Leak Index is meaningful in comparing real loss standing | ## **Tracking Non-Revenue Water** Below are examples of internal dashboards used to track water. Note, these dashboards are tracked per fiscal year, while the AWWA audit is tracked per calendar year. The graphs below help show sources of non-revenue water in terms of breaks and leaks in the water production system (middle chart) and in the water distribution system (bottom chart). The system graphs are percentages within 100 miles of pipeline and should not be taken to add up to the non-revenue water percentage. ## Assessing Supplier Performance: Electric Electrical performance is tracked differently for power supply and electric distribution. Power supply uses internal spreadsheets that calculate demand and losses. Losses are handled financially. Electric distribution is tracked primarily through Munis and the consumption reports created using its data. Below is a pie chart showing the 5-year (2016-2020) average of electrical consumption by customer class. This is an example of one of the consumption charts created through Munis. Listed are the consumption charts for each customer class for the last $5~\mathrm{years}$ . No data collection, tracking, and reporting method is without flaws, but by knowing and understanding the general usage of each customer type, outliers can be identified and determined if it was indeed a change in usage or an issue with data collection and metering. For example, the DPU switched to the Munis system in July 2018. The Munis system categorizes the definition of "MultiFamily" differently than the previous system. Notice the drop in MultiFamily usage in July 2018 and the uptick in usage for Residential in July 2018 and beyond. A non-Munis fluctuation is shown with the schools. Electricity usage drops dramatically in March 2020 through June 2020 as the schools were closed due to the COVID 19 pandemic. The Commercial and Municipal spikes in late 2018 and early 2019, respectively, are related to meter reading and billing issues are because of the Munis switch over. ## 032 # Water and Energy Conservation Plan # Assessing Sup ertormance customer consumption monitored through Munis. Gas performance metrics are tracked in the DPU's Gas, Water, Sewer internal gas dashboard in addition to the The gas industry requires extensive monitoring and reporting. Some examples include: - as well as damage to and leaks in the natural gas delivery system. An annual gas report submitted to the US Department of Transportation, which discusses pipe material and length - An annual greenhouse gas report submitted to the US EPA covering emissions relating to natural gas consumption. ## Natural Gas Consumption by Customer Class, 5 Year Average | | JUL | AUG | SEP | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | Total<br>Average | |------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------| | Los Alamos | 20 | 17 | 17 | 28 | 69 | 114 | 145 | 149 | 128 | 84 | 48 | 29 | 71 | | White Rock | 18 | 15 | 15 | 19 | 55 | 117 | 151 | 155 | 123 | 77 | 43 | 25 | 68 | The above pie chart is a 5-year average (2016-2020) of natural gas consumption for each customer class tracked within Munis. Figures are reported in therms and percentage of total. The table is a representation of residential monthly gas consumption between Los Alamos and White Rock. It is a monthly average from FY2019-FY2021. The complex chart below shows the total therms delivered each Fiscal Year. This chart helps to show that natural gas fluctuates with Heating Degree Days (HDD) and is a good indicator that a significant number of furnaces within Los Alamos remain natural gas fueled. Therms delivered with heating degree days, taken from DPU internal dashboard. ## Part II Water and Energy Conservation Program ## Water and Energy Conservation Program ## Overview The DPU Water and Energy Conservation Program (WEC Program) is facilitated by a full-time staff member, the Conservation Coordinator, who is responsible for implementing and tracking progress (success/failure) of the components of the WEC Program. The Conservation Coordinator will partner where and when appropriate. This revision focuses on conservation goals over the planning period 2022-2027. ## **Prioritizing Goals** The priorities of the WEC Program are organized and outlined in this conservation plan, which is a dynamic document driven by the DPU strategic goals and influenced by public input, whether through committees, surveys, or comments from a variety of channels. The BPU reviews strategic goals annually and revises objectives based on emerging technologies, community priorities, and progress within each objective. Because the DPU provides all utilities to Los Alamos County, the WEC Program is slightly different from other conservation plans in that it's broader than a typical water conservation plan or an energy efficiency plan. The BPU decides on five or six utility-specific conservation objectives instead of overexerting resources by choosing too many objectives for each of the provided utilities. For Los Alamos County to achieve the maximum conservation of utilities, efforts need to come from both the supplier (DPU) and the demand-side (Customer). The following pages focus on each of the strategic goals, ranked from highest to lowest priority, as determined by the BPU. Within each section, projects, programs, and best management practices will be discussed as pertaining to the DPU and to the Customer. Fiscal Year 2024 strategic goals and objectives were approved by BPU on September 13, 2022. The strategic objectives (primarily from Goal 5.0 – Achieve Environmental Sustainability) in order of highest priority to lowest priority, as determined by the BPU, are as follows: - 1. Provide Class 1A effluent water in Los Alamos County. - 2. Promote electric efficiency through targeted electric conservation programs. - 3. Be a carbon neutral electric provider by 2040. - 4. Reduce natural gas usage by 5% per capita per heating degree day by 2030 and support elimination of natural gas by 2070. - 5. Reduce potable water use by 12% from 143 gallons per capita per day (2020 calendar baseline) to 126 gallons per capita per day by 2030. - 6. Communicate with stakeholders to strengthen existing partnerships and identify new potential mutually beneficial partnering opportunities (from Goal 6.0 Develop and strengthen partnerships with stakeholders). Actions within each goal have been prioritized based on feedback from an update committee formed in 2020 as well as implementation ability (feasibility and readiness). #### **Previous Conservation Program** The previous conservation program provided conservation goals for the planning period 2015-2019. Shortly after the plan was adopted, the position of Conservation Coordinator became vacant. The DPU fulfilled much of the conservation initiatives with the education and outreach contract with PEEC. Summaries of utility-specific conservation practices of this previous program will be discussed in each subsequent section. #### **Current Program Goal Support** Goals within each utility are additionally supported by the following plans, studies, and committees: #### Water Jemez y Sangre Regional Water Plan, 2016 (see updates to selected projects in Appendix 6) Los Alamos County Long-Range Water Supply Plan, 2017 Los Alamos County Non-Potable Master Plan, 2013 DPU Conservation Plan Update Committee, 2020 Los Alamos County Comprehensive Plan, 2016 #### <u>Electric</u> DPU Conservation Plan Update Committee, 2020 Electric Reliability Plan, 2021 Integrated Resource Plan, 2022 #### <u>Gas</u> DPU Conservation Plan Update Committee, 2020 Environmental Sustainability Plan, 2017 #### **Evaluation** Measures of success are evaluated annually by the BPU to determine changes in goals. These include: - compliance pieces (AWWA audit, GPCD spreadsheet, unaccounted for gas, greenhouse emissions) - cost effective returns (is induction program encouraging changes) - ability (for example, DPU cannot currently provide rebates/incentives directly) - budget - priorities (is there an emerging issue to address sooner) Quarterly and annual reports are produced to convey projects, programs, etc. to customers. Note: The WEC Program promotes conservation to the customer primarily through voluntary compliance. There is currently no regulatory enforcement of any practices, aside from rate changes. #### **Program Targets** #### Education and Outreach #### Overview In the 2022 Voice of the Customer Survey, conducted between January 4 and February 9, 2022, it was determined that customers gave DPU a poor rating on "helping customers conserve electricity, gas and water." Education and outreach are critical components in promoting conservation. To avoid redundancy, several education and outreach deliverables are listed here and will apply to each of the goals that follow. This list is not exclusive as education will happen as opportunities present themselves. DPU's current Conservation Education and Outreach contract expires in February 2023. Bids are being evaluated for a new contract to begin in February/March 2023. #### **Public Information** Audience: DPU Customers,9000 Target timeline: Monthly Each month, the DPU includes information with the mailed utility bill. Sometimes these are seasonal topics (e.g., gas safety as winter sets in, saving water in the summer months, etc.) and sometimes they are programmatic in nature (enrolling in the new Automated Metering Self Service portal). The Conservation Coordinator has a goal to include a conservation-themed insert each month. Close to 9,000 customers receive a paper bill, and thus, the inserts. All bill inserts are also placed on the DPU's website for easy viewing and for those that receive electronic billing statements. A social media campaign for Facebook and Twitter is coordinated with each insert topic to provide additional information to our customers. See an example in Appendix 5. #### **Outreach Events** The DPU will enhance its presence in the community by attending different events that occur throughout the year to promote relevant programming and outreach efforts. Such events include: - Earth Day: once a year, April - Farmer's Market: every Thursday, May October - ChamberFest: once a year, June - ScienceFest: once a year, July - Los Alamos Fair and Rodeo: once a year, September - WinterFest: once a year, December - Meetings can include Rotary Club, Kiwanis, Habitat for Humanity, etc. Audience: Public,1000/year Target timeline: Quarterly | | Attendance | Program<br>Spending | |------|------------|---------------------| | 2021 | 6150 | \$34,574 | | 2020 | 4829 | \$37,205 | | 2019 | 10,647 | \$35,760 | | 2018 | 9311 | \$46,565 | | 2017 | 7505 | \$40,257 | | 2016 | 3900 | \$35,720 | PEEC programming outcomes (incls water festival) #### **School Programs** Audience: Youth, 4000/year Target timeline: School year with some summer activity Currently, the DPU has a contract with Pajarito Environmental Education Center (PEEC) to do educational programs both in school settings and for the public. PEEC does an excellent job of gearing school programs to current DPU projects. The Conservation Coordinator will also engage in the classroom to enhance promoting conservation in the schools. Program topics include: The Water Cycle, Water-Wise Gardening, Water Infrastructure, Electricity and Magnetism, Energy Sources, and the Water Festival, among many others. #### Overview The 2015-2019 conservation program was guided by the following water-centered goals: Goal 1. **Decrease water consumption by 12% by 2050.** This goal was a recommendation from the 2006 edition of the Long-Range Water Supply Plan and was adopted by the BPU. - a. Priorities to achieve this goal from public input - i. Increase water conservation education and outreach - Update: DPU contracted with PEEC to provide student and community education and outreach for a period of 7 years (2016-2023). - 2022 Update: Automated meters have been installed for all utilities on almost all customer accounts (unless opted-out) between 2020-2023. These meters provide hourly consumption data to customers via an online portal. Data is available for a three-year period and can be exported by the customer to keep for future reference. - ii. Residential irrigation audits and Commercial water audits - Update: Conservation Coordinator was trained in water audits and performed a handful for community businesses. - 2022 Update: water audits are on hold until current Conservation Coordinator can be appropriately trained. Coordinator can offer to review water consumption trends in metering system in the interim. - iii. Improve Water Rule W-8 with enforcement (adopted in 2005) - Update: W-8 continues as an encouraged, voluntary program. The program was never enforced. - b. Other priorities - i. System leak detection surveys - Update: ongoing at 20% of system evaluated annually. - ii. Water rates - Update: water rate change in 2017, 2019, and 2022. - c. Success toward goal up to 2021 plan revision: - i. This goal was initially met in in 2014 when comparing diversion data, per the 2017 Long-Range Water Supply Plan (page 68). - ii. A more aggressive goal was set for FY2017 with a 2016 baseline. - iii. This goal was again revised and adopted in FY2021 with a 2020 baseline to achieve a GPCD of 125.84 by 2030. Goal 2. Conservation efforts should be focused on single family residential homes and multifamily customer class. This goal was determined by the NMOSE GPCD spreadsheet and using the GPCD methodology will allow the DPU to evaluate consumption against surrounding communities and adjust goals accordingly. The 2022-2027 conservation program focuses on the following water-centered goals: - 1. Provide class 1A effluent water in Los Alamos County. - 2. Reduce potable water use by 12% from 143 gallons per capita per day (2020 calendar baseline) to 126 gallons per capita per day by 2030. #### Goal 1: Provide Class 1A Effluent Water in Los Alamos Class 1A Effluent is the highest classification of wastewater/reclaimed water. Per a strategy identified in the Jemez y Sangre Basin Regional Water Plan, Los Alamos County is upgrading its two wastewater treatment plants to operate at the highest classification currently available. This will help protect our existing water sources by more efficiently processing wastewater and reducing trace contaminants from effluent. Because effluent from both plants is used as reclaimed irrigation water, upgrading the filtration and treatment systems would allow flexibility in irrigation schedules and more efficient use of the reclaimed water. ### Upgrade Los Alamos Wastewater Treatment Plant Audience: DPU Target timeline: 2023 Funding: \$3.5 million Water Trust Board Funding, Capital Budget Tertiary filtration equipment is being added to the Los Alamos Wastewater Treatment Plant (WWTP), which will upgrade its effluent classification from 1B to 1A. This project is moving along with the hinderance of increased cost of work impacting wastewater's budget. ### White Rock Water Resource Reclamation Facility Audience: DPU Target timeline: 2023 Funding: \$30 million Clean Water State Revolving Loan The existing wastewater treatment plant in White Rock was built in the 1960s and is reaching the end of its lifespan. A new Water Resource Reclamation Facility (WRRF) is in the process of being constructed. This new facility was designed in-house to best serve the White Rock system needs. The WRRF is projected to be operational by 2023; however, supply-chain delays could push this date out. #### Sewer Rate Increase Audience: all DPU sewer customers Target timeline: Oct. 2022 — Oct. 2025 10-year investments in wastewater infrastructure: \$49,106,584 | | Monthly Bill Based on | | | |---------------|-----------------------|------------|--| | Community | 6000 gal | 14,000 gal | | | LA FY23 | \$58.21 | \$58.21 | | | LA FY24 | \$59.37 | \$59.37 | | | LA FY25 | \$60.56 | \$60.56 | | | LA FY26 | \$61.77 | \$61.77 | | | Ruidoso | \$79.71 | \$111.95 | | | Angel Fire | \$113.29 | \$206.01 | | | Santa Fe City | \$44.56 | \$90.72 | | Sewer rate increases are necessary to build cash reserves in the wastewater fund to ensure the department's ability to meet operational needs, handle system retirement obligations, and meet debt service requirements, and in preparation for unanticipated system failures or external disruptions. The topography of Los Alamos requires a complex wastewater system of pipes, pumps, and 27 lift stations. Santa Fe, comparatively, has four lift stations. See the table to the left for other community rates. A new sewer rate was approved in February 2022. The rate increase will be at 2% per year for four years affecting the monthly service fee, the flat rate charge for residential customers, and the variable rates for commercial and non-residential customers. This was approved by both BPU and County Council and went into effect on October 1, 2022. #### Goal 2: Reduce Potable Water Use to 126 GPCD The full objective is to reduce potable water use by 12% from 143 gallons per capita per day (2020 calendar baseline) to 126 gallons per capita per day by 2030. The DPU Update Committee of 2020 recommended "reducing water use by at least a third." The Jemez y Sangre Basin Regional Water Plan identifies Los Alamos as having a GPCD between 200-300 and assumes a future GPCD reduction to 150 gpcd. The DPU GPCD calculations reflect values much lower and the BPU strives to meet the 12% reduction (adapted to the changing population) as recommended in the Long-Range Water Supply Plan to ensure accommodating future demands. Gallons Per Capita Per Day (GPCD) for Los Alamos County, taken from an internal dashboard. The chart above shows nearly a decade of total GPCD for the Los Alamos County water system. The orange line tracks the DPU's conservation goal over this time. The 2020 baseline GPCD is 143.00. By 2030, GPCD will need to be 125.84 or less to meet the goal. This table lists achievable benchmarks for each year. The figure below is from the study completed for the Long-Range Water Supply Plan. The conservation savings are from the 2016 GPCD baseline and population predictions. While a little out of date, with the LRWS plan last updated in 2017, the figure provides a good picture of the differences in savings between GPCDs. | Per Capita<br>Water Use<br>(gpcd) | Reduction from 2014<br>Per Capita Use<br>(%) | Annual Conservation Savings | | |-----------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------| | | | Low Population<br>Projection<br>(acre-feet) a | High Population<br>Projection<br>(acre-feet) a | | 130 | 4 | 89 | 124 | | 120 | 11 | 267 | 371 | | 110 | 19 | 444 | 619 | | 100 | 26 | 622 | 866 | | 90 b | 33 | 800 | 1,114 | Annual water conservation savings that would be achieved based on reductions from the 2014 per capita value of 135 gallons per day in 2060. **BASELINE GPCD:** (Gal/Yr) from 143.00 2020 11,850,353 2021 141.28 2022 139.57 23,700,706 2023 137.85 35,551,058 2024 136.14 47,401,411 2025 134.42 59,251,764 2026 132.70 71,102,117 2027 130.99 82,952,470 129.27 94,802,822 2028 2029 127.56 106,653,175 2030 125.84 118,503,528 **Total Savings** LRWS Plan projections of potential water conservation savings (taken from Table 5-10, LRWS Plan). <sup>&</sup>lt;sup>b</sup> This value is equivalent to the City of Santa Fe's per capita demand in 2015. #### Reduce Potable Water Use #### **Promoting Conservation of Water** Estimated savings from current GPCD to reach 2030 goal: 11,850,000 gallons a year. #### Water Rate Increase Audience: all DPU water customers Target timeline: Oct. 2022 — Sept. 2025 Recent inflation and supply chain issues have necessitated rate increases for water. These rates will help ensure that there is sufficient water to meet customer water demand. This demand includes the increasing load at LANL and new housing developments throughout the county. The rates also contribute to repair and replacement of aging infrastructure to reduce leaks and main breaks, ensure appropriate infrastructure to support fire suppression, and | Monthly Consumption | 9,000 gal or less | over 9,000 gal to<br>15,000 gal | |---------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Current | \$6.02 | \$6.40 | | After 10/31/2022 | \$6.50 | \$7.15 | | After 09/30/2023 | \$6.83 | \$7.51 | | After 09/30/2024 | \$7.17 | \$7.89 | | After 09/30/2025 | \$7.53 | \$8.28 | | Current | \$6.02 | \$6.33 | | After 10/31/2022 | \$6.50 | \$6.50 | | After 09/30/2023 | \$6.83 | \$6.83 | | After 09/30/2024 | \$7.17 | \$7.17 | | After 09/30/2025 | \$7,53 | \$7.53 | | | Current After 16/31/2022 After 09/30/2023 After 09/30/2024 After 09/30/2025 Current After 09/30/2023 After 09/30/2023 After 09/30/2023 | Current 36.02 After 10/31/2022 36.50 After 09/30/2023 56.63 After 09/30/2024 \$7.17 After 09/30/2025 \$7.53 Current 56.02 After 10/31/2022 \$6.50 After 09/30/2023 \$6.50 After 09/30/2023 \$6.50 After 09/30/2024 \$7.17 | This rate increase includes cost-of-service adjustments. Specifically, rates will increase after each "peak" season (end of September). DPU's tiered water rate structure encourages water conservation during the peak season by increasing the water rate for usage above 9,000 gallons for single-family residences, the class using the largest amount of water at this Tier 2 rate in peak season (see page 027 for graphs). #### Promote Xeriscaping Audience: primarily SFR homeowners Target timeline: Spring 2023 Saving potential: 1.2-2.5 million gal/yr Outdoor water usage is discussed on pages 026-027 of this plan. There are an estimated 5,369 single-family homes (per GPCD calculator). The graph to the right shows the change in GPCD if both front and back yards (complete), or just one yard (half), are converted to Xeriscapes/native-scapes. This program would be partnered with the Los Alamos Master Gardeners and their Demonstration Garden and with PEEC and their garden space at the Nature Center. Additional partners could include the local nursery and landscaping companies. A webpage and resources will be available for homeowners. Audience: pre-1994 constructed homes Target timeline: Summer 2023 — 2025 Saving potential: 1.4 million gal/yr Taking the housing information provided on page 013 of this plan, it is unknown how many of the estimated 7,000 homes have a water-efficient toilet. Calculations above show GPCD reductions based on a percentage of the pre-1994 homes. A toilet retrofit program would be explored in phases. Phase 1: research/estimate retrofit potential by surveying pre-1994 homeowners Phase 2: explore grants to provide rebate options Phase 3: implement program and incorporate Fix-A-Leak educational materials #### Reduce Potable Water Use #### **Tools and Incentives to Conserve Water** #### Water Rule W-8 Audience: DPU customers, primarily homeowners Target timeline: ongoing The Water Rule W-8 is a voluntary program that encourages customers to conserve outdoor water use by implementing the following best management practices: - Between May and September, odd and even addresses can use irrigation water on designated days of the week before 10am and after 5pm. - Water waste and irrigation water runoff should be eliminated. - Sources of water leaks should be repaired. ### Water Audits: Residential and Commercial Audience: DPU customers, 25/yr Target timeline: mid-2023 — 2024 Water audits look at consumption data from utility bills, leaks from faucets and toilets, and water use habits. The DPU formerly completed commercial water conservation audits and irrigation audits for utility customers. It was determined not to be a efficient use of the coordinator's time at that period. Customers are encouraged to enroll in the new Automated Metering Self Service portal as an excellent way to self-audit. This program will send alerts when water consumption is above normal usage levels. Commercial customers can also access the Automated Metering Self Service Portal. Additional efforts are planned to target non-residential customer classes as part of a Commercial Efficiency Program. This set of workshops will provide these customers information and resources to reduce consumption and increase efficiency of their properties. LANL is one of the largest water customers for water-use processes; however, LANL is not under the jurisdiction of the DPU. LANL implements its own site-wide sustainability plan, which includes water-efficient measures. The public school system is another large user and has expressed interest in working with DPU to reduce its consumption and improve water efficiency. The school could use reclaimed water for irrigation at a reduced rate. An evaluation process is under way to partner with the Parks department to assess the irrigation of public parks and open spaces. This will allow the County to lead by example when encouraging other customers to reevaluate their own water and irrigation needs. #### Water Efficiency Kits Audience: 500 households Target timeline: ongoing Water Efficiency Kits are advertised to new residents. The items inside this kit are a small sampling of conservation tools that can go a long way in saving water and money in homes and small businesses. These kits are free and contain such items as a low-flow faucet adapter, a water leak detector, a toilet tank saver, and a drip calculator. #### **Direct Rebates** Audience: all DPU customers Target timeline: TBD The DPU, as a public entity, cannot currently offer any direct rebates on water conservation efforts that will reduce a customer's usage. This is subject to change with the recent NM constitutional amendment and customers will be notified of any rebates. Until then, the DPU shares federal rebate programs and will seek offering rebates as grant funds allow. #### Reduce Potable Water Use #### **Increasing Non-Potable Water** Estimated expansion of non-potable water: ~9 million gallons. #### Non-Potable Water Master Plan Audience: DPU Current non-residential irrigated acres: 200 Target timeline: 2013 — ongoing The Non-Potable Water System Master Plan was prepared in 2013 to optimize the use of effluent and surface water for non-residential irrigation purposes. This Master Plan helps DPU review existing infrastructure, evaluate existing and potential future irrigated sites, develop a realistic demand for system build-out, and recommend system improvements. DPU has been and continues to reference the Master Plan for non-potable projects. Increasing the availability of non-potable, reclaimed water will decrease potable water use in non-residential irrigation, a large source of water consumption. #### Los Alamos Canyon Restoration Water supply potential: 8 million gallons Target timeline: Summer 2023 Cost: \$800,000 River Stewardship Porgram, Capital Budget The Los Alamos Reservoir was formerly a source of irrigation water and reserve water in the event of wildfire. Coincidently, this water source and its transmission lines were severely damaged by major flooding events and siltation following the build-up of hydrophobic soils resulting from two wildfires in 2000 and 2011. The DPU will be repairing the Los Alamos Canyon watershed using natural channel design. Repairs completed in this manner will allow for a more natural healing that will stand up long-term over manufactured, hard-wall type repairs. Once completed, the Los Alamos Reservoir will again be a viable source of non-potable water. A recommendation of the LRWSP is to bring this reservoir back online to protect groundwater supplies in times of extreme drought. This project is also listed as a strategy in the Jemez y Sangre Regional Water Plan. #### Non-Potable Water Tank Storage Water supply potential: 1 million gallons Target timeline: Fall 2023 Cost: \$2,929,880 Water Trust Board, Clean Water State Revolvuing Fund One of the upcoming capital projects in the Non-Potable Master Plan is the Bayo Tank Project which will construct an additional storage tank and make improvements to the existing tank. Storage will increase from 190,000 gallons to 1,000,000 gallons. This will allow a full day's discharge to be captured from the WWTP, increasing the amount of water that can be delivered to the community for irrigation. #### Non-Revenue Water Target timeline: 2030 Water supply potential: reduce non-revenue water by half of EPA National Standard (16.00%) Per the AWWA audit results discussed on page 029, the DPU will work with the offered guidance to reduce its non-revenue water by half by 2030. This starts with an audit of the automated data collection system and works up through an Infrastructure Leak Index. ### Electricity #### Overview The 2015-2019 conservation program was guided by the following electric-centered goal: a. Reduce CO2 emissions for each kilowatt of electricity produced. Update: emissions have not been calculated and tracked since 2015, but it can be surmised that overall CO2 emissions have decreased. The DPU has increased its power generated from wind and solar while phasing out one of its two coal-powered generating stations. A complete greenhouse gas study will be completed by the end of 2024, which will provide a better understanding of where this emission goal is trending. - b. Additional electric priorities and initiatives - i. LA Green. A program that allows customers to pay a small surcharge for energy consumption to be used for "green" initiatives in the form of purchased Renewable Energy Credits (RECs). - 2015 Update: Los Alamos County owns considerable renewable and carbon neutral generation capacity and no longer needs to purchase RECs. Funds are used to offset additional operating costs on these generating resources. - 2022 Update: The DPU is using this funding source to fund energy efficiency technology demonstrations. - ii. Loss Evaluated Transformers: replace 1000 old transformers in 10-15 years - 2022 Update: supply chain has significantly delayed this ongoing project. - iii. Energy Audit - Update: Energy audits found to be an inefficient use of time and are on hold. The 2022-2027 conservation program focuses on the following electricity-centered goals: - 1. Be a carbon neutral electric provider by 2040. - 2. Promote electrical efficiency through targeted conservation programs. #### Goal 1: Be a Carbon Neutral Electric Provider by 2040 A "Carbon Neutral Electric Provider" means the DPU will be matching the electricity demand with a carbon free supply on an annual basis. This goal is predominately DPU-supplier focused. #### **Balancing Resources** Carbon resources: ~46 megawatts Oncoming renewables and carbon-neutral: ~27-39 megawatts ### Exit the Coal-Powered Generating Stations Audience: DPU Target timeline: Sept. 30, 2022; 2042 Megawatts provided: 46, fossil fuel energy The San Juan Generating Station (SJGS) is a coal-powdered facility located in Farmington, NM. The DPU is a partial owner in the SJGS #4 and receives a significant portion of its electrical needs from this resource. An amendment was approved to extend the agreement beyond the original closing date of June 30, 2022, to fill an energy gap created by the delay of new generation resources throughout the west. The new closing date is September 30, 2022. The DPU is working to replace this resource with the clean energy sources listed in this section. The other coal-sourced generation station is the Laramie River Station in Wyoming. It is slated for closure 2040-2042. The DPU power production team is beginning discussions to trade or possibly exit this agreement early. #### Carbon Free Power Project Audience: DPU Target timeline: online by 2030 Megawatts provided: 6.0-8.3, carbon-free energy The Carbon Free Power Project (CFPP) is a NuScale Power small modular reactor plant being constructed at the Idaho National Laboratory. CFPP is being spearheaded by Utah Associated Municipal Power Systems (UAMPS), of which the DPU is a member. The DPU is currently subscribed for 2 MW based on a money threshold of \$1.2 million. The amount subscribed changes with market fluctuation and could be supplied with 8.3 MW when fully subscribed. This project is the first of its kind in the United States. More information can be found at https://www.cfppllc.com/. #### Be a Carbon Neutral Electric Provider #### **Tools and Incentives to Achieve Neutrality** #### Legislation Audience: DPU Target timeline: as-needed #### Energy Transition Act (SB 489) The Energy Transition Act, passed in March 2019, is New Mexico legislation that will make New Mexico a leader in renewable energy. The Energy Transition Act "sets a statewide renewable energy standard of 50 percent by 2030 for New Mexico investor-owned utilities and rural electric cooperatives and a goal of 80 percent by 2040, in addition to setting zero-carbon resources standards for investor-owned utilities by 2045 and rural electric cooperatives by 2050." As SB 489 currently stands, this does not apply, but the DPU was one of the first in New Mexico to set a carbon neutral goal. #### Industrial Revenue Bond Act (HB50) Passed in 2020, this legislation makes transmission line projects eligible for Industrial Revenue Bonds available through cities and municipalities. The bond act will jump start critical transmission line construction, unlocking access to additional renewable energy resources. #### Energy Grid Modernization Roadmap (HB233) This piece of legislation, passed in 2020, directs the New Mexico Energy, Minerals, and Natural Resources Department to develop a strategic plan for energy grid modernization and to create competitive grant programs to implement such projects. This bill will ultimately encourage utilities to propose grid improvements for reliable and up-to-date systems to meet growing renewable energy demands. The DPU's Electric Production team contributed to the advisory group in 2020 for this legislation and continues to participate in New Mexico Public Regulation Commission's grid modernization webinars. #### **Smart Energy Provider** Audience: DPU Target timeline: Dec 2022 — Nov 2023 The DPU will be reviewing the application requirements for designation as a "Smart Energy Provider" from the American Public Power Association. A Smart Energy Provider is a designation "for utilities that show commitment to and proficiency in energy efficiency, distributed generation, renewable energy, and environmental initiatives." Should DPU decide it's qualified, applications will open in December 2022 and close in April 2023. Designations will be awarded in October or November of 2023 and will last two years, after which, the DPU would need to reapply to ensure maintenance of Smart Energy Provider best practices. Investigate Emergent Power Technologies Audience: DPU Target timeline: 2022-2027+ Megawatts provided: 15-25, renewable The DPU will investigate power options as resources and technologies develop. As resources and demands evolve, keeping a diverse energy portfolio is important as is providing a reasonable rate to customers. #### **Solar Resources** ### Photovoltaics/ Distributed Generation Audience: DPU and Customers Target timeline: 2040 Megawatts provided: 6 (initial goal) Per the Fiscal Year 2021 DPU final report, there are approximately 3 megawatts of solar power installed on customers' roofs. The DPU will work with customers to promote education about and installation of additional solar panels while balancing this power load to the Power Pool grid. Distributed generation is programmed to supply 30% of the County's peak daily load locally. The DPU is also interested in having a Hosting Capacity Analysis completed to understand the potential of distributed generation on the existing system and what upgrades would be required. This study will also support the exploration of other solar installations such as panels on parking lot shelters and solarized building materials. #### Legislation Audience: all utility users Target timeline: ongoing — 2027 #### Solar Market Development Income Tax Credit (Senate Bill 29) 2020-2027 Enacted on March 1, 2020, this piece of legislation provides a tax credit of 10% for small solar systems, including on-grid and off-grid PV systems and solar thermal systems. There is an annual funding cap of \$8 million issued on a first-come first-served basis. Customers are encouraged to submit an application to the NM Energy, Minerals, and Natural Resources Department as soon as their system is fully connected and operational. #### Community Solar Act (SB0084) 2022-2024 This program supports the development of community solar facilities which allows "equal access to the economic and environmental benefits of solar energy generation regardless of the physical attributes or ownership of an individual's home or business" and ensures that at least 30% of projects be allocated for low-income subscribers. DPU has evaluated this, but the DPU can acquire utility-scale resources directly and community solar as an additional utility service isn't being pursued currently. #### Transformer Upgrades Audience: DPU Target timeline: ongoing Cost: \$45,000/refurbished transformer As Los Alamos County electrifies and works to provide more carbon-free power sources, the grid system will need to be updated. Larger commercial transformers are specified and evaluated to run with minimal power loss over the life of the transformer. The replacement program is an ongoing effort to replace dangerous live-front transformers with safer dead-front versions. The original goal was to replace 1000 transformers by 2025-2030. However, supply chain issues have essentially halted this project. Transformers have increased in cost significantly and a small stock is kept on hand to immediately replace failed transformers instead of targeting aged ones on a list. The DPU will also need to prioritize transformer upgrades to accommodate the increasing electrical loading. #### Goal 2: Promote Electrical Efficiency through Targeted Conservation Programs The Water and Energy Conservation Coordinator will be responsible for the targeted conservation program. Los Alamos County supports Energy Conservation in County activities with the adoption of Index No. 0330, "Energy Conservation Policy" (found in Appendix 7). #### **Initiatives** ### Promote Energy Efficient Technologies with Demonstrations Audience: all DPU customers Target timeline: 2023-2025 The technologies being promoted as replacements to natural gas appliances are also highly energy efficient in comparison to conventional appliances. Other efficient technologies could include solar power and battery storage, lighting improvements, and programmable thermostats and controllers. The possibility of waiving permitting fees for efficiency improvements is also a recommendation of the DPU Update Committee of 2020. The DPU is discussing different options to best demonstrate some of these technologies with a debut by 2023. Customers could receive direct mailings with information on efficient technologies. For example, homes built before a certain year can be assumed to have a gas furnace and could be provided information on more efficient alternatives. #### **EV** Charging Audience: DPU, visitors Target timeline: Spring 2023 Cost: \$286,000, capital project The DPU is currently mid-project of installing two DC fast chargers in county-owned parking lots. While these and existing chargers are targeted at visitors, the DPU will investigate the options — ranging from encouraging to providing — for charging access for residents, especially the growing number of multifamily units. An application has been submitted to be a part of a working Clean Energy to Communities peer-learning pilot cohort. This cohort will explore "accelerating the deployment of equitable, grid-friendly EV charging infrastructure" with other neighborhoods across the country. #### Commercial Efficiency Series Audience: all non-residential customers, ~800 meters Target timeline: starting 2023 Because residential customers make up the majority of DPU's customer base, a lot of programming is targeted at this class. However, in reviewing the 5-year average electrical consumption by class (see page 030), residential customers are a small percentage of the consumers. A program is in development for the commercial, education, and other classes. This program will be guided by the ENERGY STAR and WaterSense resources pertaining to these customers. A certification award will be considered for customers who achieve a set reduction in energy and/or water. Many of the buildings these customers occupy are older and could potentially have outdated and unmaintained fixtures and appliances. For example, weatherstripping gaps can save 5-10% on energy bills. LANL implements its own efficiency plan, but the DPU could partner to exchange program ideas and spread initiatives across the county. #### Electrical Efficiency in Targeted Conservation Programs #### **Tools and Incentives to Promote Efficiency** #### Rebates and Incentives Audience: all utility users Target timeline: ongoing — Dec. 1, 2032 The DPU cannot directly offer rebates, but customers can take advantage of the following: Inflation Reduction Act (HR 5376) 2022-2032 Part of the Inflation Reduction Act (IRA) is to reduce America's emissions. Per Rewiring America's Go Electric Guide, the IRA strategically offers discounts and incentives "to make the transition to clean energy and a decarbonized life easy and financially smart." This act will encourage the adoption of EVs and solar generation, as well as updating or converting appliances, among many other techniques. The programming in this act will also support weatherization, rewiring structures, and updating electrical panels to help with electrification. Programs are to begin in 2023 and last for 10 years. Extensive programming around the IRA will happen in early 2023 to assist customers in taking full advantage of the incentives. #### **UAMPS** A possible rebate program is being investigated with UAMPS, which would provide rebates for appliances with improved efficiency. Should this program become a reality, customers will be informed with a hybrid discussion with the PEEC partners, bill inserts, and a webpage. #### Updated Building Energy Codes Audience: builders and renovators Target timeline: ongoing Adopted in August 2020 by the State of New Mexico's Regulation and Licensing Department, the 2018 iteration of the International Energy Conservation Code (IECC) will reduce emissions from and increase efficiency of residential and commercial buildings. According to energycodes.gov, it is estimated that residential customers could see cost savings of nearly \$400 annually (per 1000 ft²). Commercial customers could see \$138 in annual savings with a simple payback of 4.6 years. The 2021 IECC has been released and could be adopted by the state in early 2023. Estimated total energy cost savings for the 2021 IECC compared to the 2018 IECC for this climate zone are 12.6%. #### Efficiency Kits and Audits Audience: DPU electricity customers Target timeline: ongoing, 500 kits Free Energy Efficiency Kits are available from the DPU and can be picked up at the Pajarito Environmental Education Center or at the Customer Care Center. These kits contain child safety outlet caps, which also help keep drafts out, switch and outlet foam sealers, rope caulk for sealing small gaps, an LED nightlight, an LED bulb, and a furnace filter whistle that alerts customers when it's time to change the filter to maintain efficiency. The items inside this kit are a small sampling of conservation tools that can go a long way in saving energy and money in homes. Until efficiency audits become available, customers are encouraged to do DIY audits using any one of the online calculators, tracing down and sealing drafts, and evaluating behavior. Commercial customers can utilize the ENERGY STAR Portfolio Manager, which helps track consumption and provides recommendations for improvements. ### Gas #### Overview The 2015-2019 conservation program was guided by the following gas-centered goal: Goal 1: Improve natural gas efficiencies relative to the 2006-2011 baseline beginning in 2014. Initially this goal translated to a 3% reduction by 2030. - a. Priorities to assist this goal from public input - i. Incentives for high efficiency washing machines and refrigerators - Update: Never explored further. Restriction on public entities providing rebates has been a major hinderance. - ii. Enhanced home energy audits - Update: Energy audits found to be an inefficient use of time and are on hold. - iii. Neighborhood audit program - Update: never explored further. - Current program will consider curating resources for improving efficiencies of a range of home types. This can be accomplished because a majority of the homes were built in blocks when the town was under government control. - iv. Increase energy conservation education and outreach - Update: PEEC continues to hold annual water festival for 4th graders with around 250 students benefiting each year. - A Home Efficiency Expo was held in 2016 in conjunction with tours of energy efficient homes. Both were well attended (220 people and 81 people, respectively). The 2022-2027 conservation program focuses on the following gas-centered goal: 1. Reduce natural gas usage by 5% per capita per heating degree day by 2030 using a 2020 calendar year-end baseline and support elimination of natural gas usage by 2070. Graph charting Los Alamos County therms per capita per heating degree day. A "heating degree day" (HDD) essentially means a day when the temperature outside warrants using a heating source to get the inside temperature to 65°F. For example, if the outside temperature is 40°F, it takes 25 degrees to reach 65°F thus the day has a 25HDD. See the chart "Monthly average heating and cooling degree days" in Gas Overview section. ### Goal 1: Reduce Natural Gas Usage by 5% by 2030 and Support Elimination by 2070 The full objective is to reduce natural gas usage by 5% per capita per heating degree day by 2030 using a 2020 calendar year-end baseline and support elimination of natural gas usage by 2070. The DPU Update Committee of 2020 recommended the goal to "eliminate use of natural gas." #### Planning for Cost Adjustments Audience: DPU Cost: TBD Target timeline: Ongoing, 2070 DEADLINE As customers are encouraged to switch, the DPU will need to develop a plan to offset the cost for the remaining customers and determine a phase-out course of action. The overall cost of operating the gas delivery system will remain the same, no matter the number of customers; however, the total cost divided among 4,000 customers will be noticeable versus the cost divided among the current approximate 8,000 customers. #### **Reducing Unaccounted-for Gas** #### Replace Meters For Accuracy Audience: DPU Benefits: DPU Customer Target timeline: Ongoing, 375/year The DPU will continue replacing gas meters to provide more accurate readings. Meter technology is continually evolving, and the newest meters are very accurate but have shorter battery spans. A new meter change-out goal will be revised for Fiscal Year 2023, increasing the number of meter change outs to 375 per year. All isolated gas risers were replaced between Fiscal Year 2010 and Fiscal Year 2016. #### Leaks and Lost Gas Audience: DPU Target timeline: Ongoing Per compliance, gas leaks are addressed and fixed as found and are reported annually to the Pipeline and Hazardous Materials Safety Administration, known as PHMSA. The report includes size, material, age, and mileage of pipes as well as services, leaks, and causes occurring in the fiscal year. Unaccounted for gas is reported on the PHMSA report and is also tracked on an internal dashboard. Unaccounted For Gas Loss (%). #### Reduce Natural Gas Usage and Support Elimination #### Promote Alternatives to Gas Funding for new technology demonstrations is provided by the "LA Green" program funds. This is a funding source that customers can opt-in on their utility bill to ensure that DPU is providing some electricity from green sources. This fund is no longer needed because DPU has reliable sources of clean energy. The BPU approved using the remaining money in this fund on projects contributing toward DPU conservation objectives. In addition to demonstration units, resources will be published in monthly bill inserts, social media, and as a webpage. Talks will be organized when possible. Audience: DPU Customers Target timeline: 2022-2025+ #### **Induction Cooktop Technology** The DPU has two projects under way to provide customers the opportunity to try induction cooking technology before committing to Audience: DPU Customers, goal of 1000 Est. Cost: \$750 (loaners); \$4000 (stove) Target timeline: July 2022+ full units. Induction cooking technology uses electromagnets to heat an induction-compliant cooking vessel. These units heat cookware faster than conventional electric cooktops. They also eliminate the indoor air pollution and open flame danger of gas stoves. The first project is a loaner program with portable induction cooktops. These single burner units will be available to residents of Los Alamos County for a period of two weeks and will include instructions and cookware. This project will begin in July 2022 and will start with six induction cooktop kits. The second project is to install a full induction stove unit at the White Rock Municipal Complex. DPU staff will document the installation of this unit to better provide customers information on this process. Cooking classes will be taught using this stove and customers will have an opportunity to test the difference between an induction unit and their existing stoves at home. The project will be installed in the winter of 2022-2023. #### **Heat Pumps** The DPU is actively working to find locations to demonstrate a heat pump dryer, a heat pump hot water heater, and other heat pump-driven Audience: DPU Customers, goal of 500 Est. Cost: \$5000-\$7000 Target timeline: 2023 technology. The desired locations will be similar to the location for the induction stove: accessible and interactive (where appropriate) by the public. The DPU wants to provide opportunities for public interaction to best encourage adoption of heat pump technologies. #### Reduce Natural Gas Usage and Support Elimination #### **Tools and Incentives to Conserve Gas** #### **Energy Audits** Audience: DPU Customers Target timeline: 2022 — 2025+ Energy audits allow customers to see consumption history and sources of energy leaks within their home. These audits result in recommendations for conservation practices to reduce energy loss and consumption. Currently, the DPU is not offering comprehensive energy audits as it was determined to be an inefficient use of the previous coordinator's time. Options are being evaluated to provide this service in the future with partner organizations. The current coordinator will review energy usage with any customer (commercial, residential, other) to look for trends and provide surface recommendations. Resources on weatherization and DIY audits, such as the ENERGY STAR Home Energy Yardstick, are available for customers. Customers are also encouraged to access Automated Metering Self Service Portal to see nearly real-time consumption data and self-audit. This system has already helped with detecting leaks, saving customers money, alleviating dangerous gas situations, and reducing unnecessary waste of natural resources. #### Gas Rate Increase Audience: all DPU gas customers Target timeline: Oct. 2022 — Oct. 2025 Large increases to costs due to inflation and supply chain shortages have negatively impacted current gas fund balances. The proposed adjustments are intended to generate revenues needed not only for current operations but also to build cash reserves necessary for future infrastructure needs. Gas rates will increase every year for four years, unless deemed not needed. This rate is a "pass-through" rate structure and includes the monthly service fee and the consumption rate. The consumption rate is complex, but more simply put DPU's actual cost to purchase the natural gas commodity is passed directly to the customer in the variable portion of the commodity rate, which is calculated monthly. Large meters and large gas consumers are going to see this gate rate increase the most. Customers are provided with conservation measures to reduce gas consumption and help lower their bills. #### Rebates Audience: all DPU gas customers Target timeline: 2023 — 2033 The DPU, as a public entity, cannot currently offer any direct rebates on gas conservation efforts that will reduce a customer's usage. This is subject to change with the recent NM constitutional amendment and customers will be notified of any rebates. Until then, the DPU shares federal rebate programs and will seek offering rebates as grant funds allow. DPU is investigating a possible rebate program with UAMPS. The Inflation Reduction Act is promising some extensive rebates and incentives to encourage customers to electrify their systems over the next 10 years. Programs are anticipated to begin in 2023. Resources and guidance will be provided to the DPU customers as program information becomes available. ## Additional Goal: Develop and Strengthen Partnerships with Stakeholders #### DOE/LANL The DPU and the DOE are joined in an ECA which allows each entity to combine resources for the Los Alamos Power Pool. The Power Pool purchases, sells, and schedules the power required for Los Alamos County customers and LANL. The current ECA expires in 2025 and both parties are working on negotiations for a post-2025 ECA. The IRP is a tool that assists the ECA partners in planning for future resources. #### Sustainability Manager The County recently hired a sustainability manager, per a recommendation of the LARES Task Force. The first task for this position will be to manage a contract for the greenhouse gas study and subsequent climate action plan. A partnership with the sustainability manager will guide the DPU in implementing LARES recommendations that the BPU have found in-line with DPU goals. The LARES Task Force, appointed in 2021 by Los Alamos County Council to create recommendations to reduce carbon footprints and enhance sustainability, released a final report in 2022. With each recommendation in the plan, LARES includes a strategy for completion and potential costs. The sustainability manager will be responsible for implementing these recommendations. An additional and tied partnership will be with the ESB. The ESB was established to advise the County Council on environmental sustainability issues and related policies, programs, and services. Several of the points in the Los Alamos County Sustainability Plan overlap with the DPU Goals and Objectives; however, the Sustainability Plan focuses on creating a more sustainable community while the DPU Conservation Plan specifically relates to the supplier and customer of utilities. #### Reclaim Water Users The DPU will continue to work with the current users of reclaimed water for irrigation to ensure this valuable resource is not being wasted by broken or misaligned sprinklers, or by over watering. The primary consumers of this water source are the County Parks Division and Golf Course. The public schools and LANL are additional, large-scale potential users as the reclaimed/non-potable water system is expanded. The pipeline network is not in place to accommodate residential users of the county system. #### Library of Things In November of 2022, the DPU agreed to a trial period of loaner items through the public library. This program will begin with loaning two of the very popular induction cooktop units and four of the new Kill A Watt power meters with instructions on interpreting the meter results. The library is working on expanding by loaning items beyond media (books, CDs, etc.) and the DPU can reach out to additional audiences. #### Partnerships with Stakeholders #### Memberships #### **Alliance for Water Efficiency** In July 2008, the DPU became a charter member of the Alliance for Water Efficiency (AWE), which provides comprehensive information about water efficient products, practices, and programs. Additional services include the development of conservation codes and standards, coordination with green building initiatives, training for conservation professionals, and general water use education. #### **New Mexico Water Conservation Alliance** The DPU continues to be a member of the New Mexico Water Conservation Alliance (NMWCA), a non-profit dedicated to water conservation issues. Many communities from around the state meet regularly to discuss issues, exchange information, provide education, and work toward a water-secure future for New Mexico. #### WateReuse In April 2021, the DPU joined the New Mexico chapter of WateReuse. The WateReuse Association is solely dedicated to advancing laws, policy, funding, and public acceptance of recycled water. WateReuse is focused on "aiding and accelerating the natural process of cleaning the water to make it suitable for its intended purpose, from irrigation to industrial uses to drinking." #### **Energy Star Promotional Partner** The DPU became a promotional partner with the Environmental Protection Agency's Energy Star Program in 2008. This partnership provides a unique opportunity to leverage ENERGY STAR<sup>TM</sup> and receive free energy efficiency updates designed for customer education. #### **Alliance to Save Energy Member** In 2008, the DPU became a member of the Alliance to Save Energy, which is well known for its national Energy Hog campaign. The bipartisan non-profit is a coalition of business, government, environmental, and consumer leaders advocating to advance federal energy efficiency policy. #### Voice of Customer Survey Feedback Audience: DPU Customers Target timeline: Dec 2022 — Nov 2023 The "Voice of the Customer Survey" is specifically designed to help the DPU understand the customer perception of the utility and the services provided. The 2022 Voice of the Customer Survey revealed that customers gave the DPU a poor rating on "helping customers conserve electricity, gas, and water." This aligns with the absence of a dedicated Conservation Coordinator from 2016-2021 and only opens up room for improvement until the next survey. ### Public Input: Recommendations from DPU Update Committee GOALS - 1. Eliminate use of natural gas. - 2. Find ways to accommodate a massive increase in residential and local solar. - 3. Reduce water use by at least 1/3. #### RECOMMENDATIONS FOR EDUCATION AND PROMOTION: 1. Customer use of Advanced Metering Infrastructure (AMI) data The installation of smart meters will eventually allow customer access to AMI data. This could revolutionize individual utility use as customers learn how much they use with various activities. But to be effective, the AMI data presentation must be simple and easily understood. This means there is a need to ensure people have adequate education on how the AMI system works, and some assistance with figuring out what it means. The county should provide interpretation: how is this supposed to work and how does the individual customer make changes? Advantages: Knowledgeable customers will modify behavior to increase conservation. Drawbacks: Cost of presentation software and customer access. Some county labor involved with interpretation. 2. Promote "Conservation Will Happen and Will Mean Increased Unit Costs" If people understand that conservation is inevitable, and that it will mean unit costs will increase, it will inoculate people against a commonly known issue while encouraging a modest race to save both resources and money. Of course, unit costs will probably go up anyway, maybe even more without conservation. See appendix "Cost of Conservation" for further explanation. Advantages: No cost. Is honest. Provokes conservation on all fronts. Drawbacks: Will probably open brief heated debate on conservation. Add "Residential Avg Usage" to Electricity, Gas and Water on Utility Bills Allows each customer to know how their usage compares to residences of similar size. Usage at all single-family homes would be averaged and compared, while duplex- and apartment-style units would have their own comparisons. (Albuquerque does this on their water bills) See appendix "Residential Average Usage" for further explanation. Advantages: lets above-average users know they can do better. Drawbacks: Some programming and data processing time. 4. Encourage Programmable Thermostats and Controllers Should be installed in new construction. County could supply information about energy and cost savings from using these relatively simple and low-cost devices. Advantages: Decreases usage when appropriate. Saves money and resources. Drawbacks: Very minor cost increase for device, compensated by savings. 5. Publish Standards on Thermostat/Controller Settings and Energy Savings Explain how devices are used (all features, etc.) and how do they maximize efficiency? Use ASME standards and area-specific input from the New Mexico Technical Resource Manual to indicate proper settings and explain results. Compare new/suggested measures with previous/baseline measures. Advantages: Sets baseline to encourage use of improved controllers. Drawbacks: Some research and writing. 6. General Energy Efficiency Education Provide information in monthly bill statements or monthly mailings on energy efficiency. Since not everyone gets a bill in ### Public Input: Recommendations from DPU Update Committee (continued) the mail, there should also be online media information feeds. Advantages: Educated customers generally conserve. Drawbacks: Some county time and possibly printing costs. RECOMMENDATIONS THAT MAY INVOLVE REBATES: 7. Pursue Grants for Appliance Rebates and Publicize Existing Local State and Federal Rebates and Tax Breaks Typically affected appliances are water heaters, furnaces, ranges, washers, dryers, refrigerators, lighting fixtures, evaporative coolers, air conditioners, heat pumps, and smart thermostats. Information could be part of one of the current DPU bill inserts. Advantages: Replacing older inefficient appliances with newer highly efficient versions should reduce consumption. Drawbacks: Some investment of time and resources from county staff. 8. Reduce Outdoor Water Use with Xeriscaping Education, Rebates and/or Incentives With a warming climate, water use on residential landscapes will only increase, and it is already the highest seasonal water use for most residences. Smart plantings and removal of unused turf can greatly reduce the amount of water use. Also, the storage of rainwater and snow melt on the residential property can improve plantings and reduce wear and tear on stormwater runoff infrastructure. This is the biggest bang for the effort--as water use clearly increases during hot months. Advantages: The county already contracts with an education center, and education is low cost treatment. Easy changes through rebates (removing turf rebate) can result in large water savings almost immediately. Drawbacks: Rebates or incentives cost money, but only using education can be a slow process RECOMMENDATIONS ABOUT COUNTY SERVICES: 9. Coordinate and support efforts with Los Alamos Public Schools (LAPS) LAPS is generally cooperative and certainly wants to save money. There are indications they could save at least 10% on water bills by altering their schedule, and there are probably many other ways to cut utility use and save money. Advantages: Utilities conserved, LAPS saves money Drawbacks: Time and effort from both county and LAPS. 10. Free delivery of tumbled glass or mulch when replacing turf Remove a common obstacle to xeriscape conversion (homeowner doesn't have access to an appropriate truck). Same thing could be accomplished with a loaner truck. Advantages: Saves water. Drawbacks: Labor cost if delivered, truck cost if a loaner. 11. Accommodate Purchase-power-only Hybrid Solar It is now possible to set up residential solar systems that use modest battery backup and do not feed back into the grid, only using county electricity when the battery system is depleted. This solves the county's problem of trying to use the unpredictable electricity produced. Advantages: Less load on county electrical system without need to adjust grid. Drawbacks: Some revenue loss, some code and rate complications. 12. Eliminate Most Street Lights Some (not all) research indicates that streetlights only increase safety at main intersections. This is a complex issue full of wild claims on both sides, but it's certain that removing streetlights saves a lot of energy and improves the night sky. Advantages: Cuts costs, eliminates substantial CO2, improves night. Drawbacks: Makes some people feel less safe. RECOMMENDATIONS INVOLVING CONSTRUCTION: 13. Solar-ready roofs and siting for new construction ### Public Input: Recommendations from DPU Update Committee (continued) Encourage or require new structures to have solar-friendly attributes Reducing roof penetrations and shading on south-facing areas, aligning structure for southern exposure, installing conduit for future solar infrastructure, enabling passive solar design features such as summer-shaded south facing windows. It is much less expensive to include these features during initial design and construction than add them in the future and can provide long-term energy benefits. Advantages: Reduce cost of future improvements and improve efficiency. Drawbacks: Additional construction cost. Perception of government overreach. Restriction of architectural design freedom. 14. Stop issuing natural gas hookups to new construction Natural gas is primarily used for heating homes and water, and secondarily for stoves. Most homes will probably develop greater electricity capabilities (solar, etc.) and incorporate more energy-saving design. La Senda Unit B used this approach and potentially be a pilot program. Advantages: Reduces greenhouse gasses. Drawbacks: May initially be more expensive to heat. Some folks are very attached to gas stoves despite their inefficiency. RECOMMENDATIONS INVOLVING BILLING OR FEES: 15. No property assessment increase for building improvements that increase water, gas or electric efficiency Stop charging people indefinite tax for conserving. Already in effect for solar installations. Advantages: Removes a roadblock to conservation. Drawbacks: Very minor revenue deferral. Possible legal issues? 16. Waive building permit fees for improvements that cut water use or energy consumption Window replacements, solar hot water, rain collection systems, etc. Advantages: Removes a roadblock to conservation improvements. Drawbacks: Possible increase in staff work, loss of some revenue. 17. Eliminate fees to set up off-grid solar The county has difficulty using the solar power produced by small home systems. Much goes to waste since it is not delivered to the grid at a time that it can be used. Off-grid solar does not create this problem while it conserves resources. If these homes never use county electricity, and are self-sufficient, then the county does not need to plan on providing it and can reduce the amount of power that is purchased. Advantages: solar electricity does not go to waste. County doesn't need to try to store this solar energy in County-owned batteries. County does not need to purchase as much electricity. Roof-top solar does not input to the County's electrical infrastructure, and therefore does not 'tax' the infrastructure Drawbacks: New County Building Codes may be needed to assure that solar owners build to safe standards. Adds a County Building inspection. County loses some homes as customers 18. Granular Tiered Water Rates Use small, easily understood tiered water rates that start quickly. For example, first 100 Gallons is 50 cents, second 100 gallons 51 cents, etc. When costs increase slightly for every unit used the system is easily understood and immediately effective. Plus, there is no low "dead zone" where consumers feel they have implicit permission to use the amount in the lowest tier. Advantages: Easy to understand and implement. Initial rate would be lower. No additional cost. Avoids "Implied Permission." Drawbacks: Some up-front programming cost. 19. Eliminate Service Charge for Water Usage Remove "In for A Penny" tendency to use water while rewarding the most stringent conservation. The service charge gives the impression that first few thousand gallons of use only increases cost slightly. If all usage is a direct cost, even more conservation is encouraged. ### Public Input: Recommendations from DPU Update Committee (continued) Advantages: Maximizes cost advantage of conservation Drawbacks: Requires slight adjustment to rates to be value neutral 20. Convert Electric and Gas Services Charges to Minimum Charges Remove a regressive tax. Virtually everyone uses enough gas and electricity to surpass current service charges. A direct usage-to-cost relationship simplifies understanding of conservation advantages while simultaneously benefiting lowest income bracket. Advantages: Simplifies rate and saves money for super conservers Drawbacks: Requires slight adjustment to rates to be value neutral Appendix: Cost of Conservation Most people who consider conservation issues understand that conserving utilities will inevitably lead to higher unit costs, such as price per thousand gallons of water. Further, many otherwise uninterested folks have noticed this effect over the years. So far, it has not been openly acknowledged or promoted, perhaps because there is a suspicion that it would lead to resistance toward conserving. However, if it becomes a "meme" it would probably have the opposite effect. Presented as "conservation will happen" and therefore "unit prices will go up" it should provoke a modest Race To The Bottom. Meaning, it would encourage people to cut back on their use to avoid paying more for their utilities. Even more interesting, it means the more aggressive conserver may end up saving quite a bit as time goes by. It has several advantages, not the least being that it's true. Conservation will happen whether we like it or not. And it will lead to higher unit costs. Probably it would be best to avoid any heavy-handed or over serious approach. An even-tempered statement that 'this is inevitable' should be enough. It could also be pointed out that this does not mean the average bill would necessarily go up. Using water as an example, if we all used half as much water, the infrastructure would be less strained, water treatment would be cheaper, the cost of pumping would probably go to less than half due to the longer recharge period in the wells, and it probably would mean far less need to sink new wells. While the cost advantages are muzzy at best, it is in fact possible that under the 1/2-use scenario we would all pay a little less on our water bill. Finally, it should also be noted that unit prices will probably go up anyway, with or without conservation. And there are scenarios where gas, electricity or water prices would go up even faster without conservation. The cost of taking this approach would be nearly zero. Basically, zero compared to current methodologies, since it's normal to include flyers in the utility bills -- it would just be additional content. Residential Average Usage People naturally compare themselves to their neighbors. If you are the high water/electricity user, and you know it, you are more likely to make changes to reduce your usage. This information works best with an education plan, promoting conservation throughout the community. It effectively and privately guides residents into conforming and conservation. It's easy data to compile since the county already collects it. It's easy to put this data on utility bills, next to the 'actual' usage from the past year (using two columns in the graph). The county can easily watch the yearly average usage, as this number will decrease from year to year if residents are conserving. A new routine will need to be written for the Utilities to calculate the information. This may need funds to accomplish, if the county does not have a programmer on staff to write the script. The statements need a new format to add the average data to the graphs. ## Additional Graphs and Enlarged Figures Monthly Gallons Per Capita Per Day 5 years of monthly GPCD data as references in "Assessing Supplier Performance: Water," page 025. Opposite page: Monthly Precipitation 2011-2021, page 014. ## Additional Graphs and Enlarged Figures Figures from LANL Climatology 2021 Update. Precipitation (top), page 014, and Temperature (bottom), page 015. Reclaimed Water Use Maps, page 019. # Appendix 3 NMOSE GPCD Calculator | Interstate Stream Commission | NMOSE GPCD CALCULATOR Gallons per Capita - v2.05 | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Release Date: August 2015 This spreadsheet-based GPCD calculator is designed to help quantify and track water uses associated with water distribution systems. The spreadsheet contains several separate worksheets. Sheets can be accessed using the tabs towards the bottom of the screen, or by clicking the buttons on the left below. Descriptions of each sheet are also given below. It should be noted that all the recorded data should be from actual metered results and should not include any estimates. | | | | THE FOLLOWING KEY APPLIES THROUGHOUT: | Value to be entered by user Dropdown box, pick from list Value calculated based on input data No longer available for input Dropdown box, pick from list Look for the following boxes that provide addition Instructions No longer available for input | | | Please begin by provi | ding the following information, then proceed through each sheet: Los Alamos County New Mexico | | | REPORTING YEARS: | Enter the most recent reporting year: Data can be entered back to: | | | NAME OF CONTACT PERSON: James Alarid E-MAIL: james.alarid@lacnm.us TELEPHONE: Ext. SELECT THE REPORTING UNITS FOR VOLUME DATA: Gallons (US) For unit converter click here: | | | | Instructions & | his sheet | | | Census Data | ensus data and the portal to get the data from the Census website | | | Single-Family S | Single-Family residential gallons and population | | | Multi-Family M | ulti-Family residential gallons and population | | | ICI & Other Metered | ther data including Commercial, Industrial and Institutional [1.3] and Other metered [1.4] categories | | | Reuse | vata related to water reuse projects | | | Total Diverted | otal Production and Diverted Water | | | Reported Data | The calculated data graphical review of most common performance indicators | | | Annual Performance | he calculated data graphical review of <b>annual</b> performance indicators | | | Monthly Performance | The calculated data graphical review of monthly performance indicators | | | Definitions | se this sheet to understand terms used in the audit process | | | r | All parties reserve the right to validate the data recorded in this document. This does not bind the OSE or the Utility to the esults. It is a tool used for planning purposes. | | NIMOSE COCO Calculator v2 02 #### NMOSE GPCD Calculator NMOSE GPCD Calculator v2.02 # Appendix 3 NMOSE GPCD Calculator 2015 2021 ### AWWA Audit ### AWWA Free Water Audit Software: User Comments WAS v5.0 Use this worksheet to add comments or notes to explain how an input value was calculated, or to document the sources of the information used. | General | Comment: | |---------|----------| | Avallé ! | | |---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Audit Item | Comment | | Volume from own sources: | Total Water Produced for all for 2021 divided by 1,000,000 | | Vol. from own sources: Master meter error adjustment: | Additional meter accuracy data for production wells is needed to improve this value. Calculation only includes 2 of 12 production wells. Source: PureOps - Los Alamos County - Meter Testing Report 17.04 - C.PDF PureOps tested 21 meters in 2016, three of twhich were production wells (Otowi 1 and 4 and Pajarito 2). The Otowi Well 1 was highly inaccurate (only registering 29.8% of the flow) and therefore replaced. In order to not include an extreme outlier value, the remaining two values were averaged. (Value of all three = 76.9% vs. valueofjusttwo = 100 4%) | | Water imported: | None (Los Alamos County has a contract with the United States Bureau of Reclamation for 1,200 acre-feet of water per year from the San Juan-Chama Project but this water has not been brought online). | | Water imported: master meter error adjustment: | | | Water exported: | Put the LANL water sale as exported water. | | Water exported: master meter error adjustment: | | | Billed metered: | Total water sales, Kgal: total number added 12 months up and divided by 1,000 | | Billed unmetered: | None | | Unbilled metered: | None | | Unbilled unmetered: | Calculated | | Unauthorized consumption: | | | Customer metering inaccuracies: | No data (no customer meter testing was conducted in 2021). | | Systematic data handling errors: | | | Length of mains: | 122 miles of water main pipeline + 45 miles of transmission main = 167 | | Number of active AND inactive service connections: | Average of 12 months of billed locations: total units / locations | | | Answer yes to question regarding whether customer meters are located at the curb. From email from James Alarid to Amy Ewing on October 9, 2017: "the vast majority are at the curb." | | Average operating pressure: | From email from James Alarid to Amy Ewing: "Average system operating pressure is 65 psi." | | Total annual cost of operating water system: | Total cost for Water Production + total cost for Water Distribution - Less: Interdept Water | | Customer retail unit cost (applied to Apparent Losses): | Los Alamos County Water Rate | | Variable production cost (applied to Real Losses): | Total Water Production Electric Bill divided by Volume from own sources. | | A | | AWWA Fre | ee Water Audit Software | | WAS v5.0<br>an Water Works Association | |-----------------------------------|------------------------|---------------------------|---------------------------------|-------------------------------------------------------------------------|----------------------------------------| | | Wa | ter Audit Report for: | Los Alamos County (NM3500115) | | - | | | | Reporting Year: | 2021 | 1/2020 - 12/2020 | 9 | | | | Data Validity Score: | 72 | | | | | Water Exported 260.000 | | | Billed Water Exported | | | | | | Billed Authorized Consumption | Billed Metered Consumption (water exported is removed) 790.395 | Revenue Water | | Own Sources<br>Adjusted for known | | Authorized<br>Consumption | 790.395 | Billed Unmetered Consumption | 790.395 | | errors) | | 802.008 | Unbilled Authorized Consumption | Unbilled Metered Consumption 0.000 | Non-Revenue Wat<br>(NRW) | | 1,189.000 | | | 11.613 | Unbilled Unmetered Consumption 11.613 | 8 | | | Water Supplied | | Apparent Losses | Unauthorized Consumption 2.323 | 138.605 | | | 929.000 | | 20.429 | Customer Metering Inaccuracies 16.131 | | | | | Water Losses | | Systematic Data Handling Errors 1.976 | | | Water Imported | | 126.993 | Real Losses | Leakage on Transmission and/or Distribution<br>Mains<br>Not broken down | | | 0.000 | | | 106.564 | Leakage and Overflows at Utility's Storage Tanks Not broken down | _ | | | | | | Leakage on Service Connections Not broken down | | ### AWWA Free Water Audit Software: Determining Water Loss Standing WAS v5.0 American Water Works Association. | Water Audit Report for: | Los Alamos County (NM3500115) | Reporting Year: | 2021 | 1/2020 - 12/2020 | | Data Validity Score: | 72 | Data Validity Score: 12 | | | | | | | | |--------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--| | | Water Loss Control Planning Guide | | | | | | | | | Water Audit Data Validity Level / Score | | | | | | | | Functional Focus<br>Area | Level I (0-25) | Level II (26-50) | Level III (51-70) | <b>Level IV</b> (71-90) | Level V (91-100) | | | | Audit Data Collection | Launch auditing and loss control<br>team; address production<br>metering deficiencies | Analyze business process for customer metering and billing functions and water supply operations. Identify data gaps. | Establish/revise policies and procedures for data collection | Refine data collection practices<br>and establish as routine business<br>process | Annual water audit is a reliable<br>gauge of year-to-year water<br>efficiency standing | | | | Short-term loss control | Research information on leak<br>detection programs. Begin<br>flowcharting analysis of customer<br>billing system | Conduct loss assessment investigations on a sample portion of the system: customer meter testing, leak survey, unauthorized consumption, etc. | Establish ongoing mechanisms<br>for customer meter accuracy<br>testing, active leakage control<br>and infrastructure monitoring | Refine, enhance or expand ongoing programs based upon economic justification | Stay abreast of improvements in metering, meter reading, billing, leakage management and infrastructure rehabilitation | | | | Long-term loss control | | Begin to assess long-term needs requiring large expenditure: customer meter replacement, water main replacement program, new customer billing system or Automatic Meter Reading (AMR) system. | Begin to assemble economic business case for long-term needs based upon improved data becoming available through the water audit process. | Conduct detailed planning,<br>budgeting and launch of<br>comprehensive improvements for<br>metering, billing or infrastructure<br>management | Continue incremental<br>improvements in short-term and<br>long-term loss control<br>interventions | | | | Target-setting | | | Establish long-term apparent and real loss reduction goals (+10 year horizon) | Establish mid-range (5 year<br>horizon) apparent and real loss<br>reduction goals | Evaluate and refine loss control goals on a yearly basis | | | | Benchmarking | | | Preliminary Comparisons - can<br>begin to rely upon the<br>Infrastructure Leakage Index (ILI)<br>for performance comparisons for<br>real losses (see below table) | Performance Benchmarking - ILI<br>is meaningful in comparing real<br>loss standing | Identify Best Practices/ Best in<br>class - the ILI is very reliable as a<br>real loss performance indicator<br>for best in class service | | | For validity scores of 50 or below, the shaded blocks should not be focus areas until better data validity is achieved. Once data have been entered into the Reporting Worksheet, the performance indicators are automatically calculated. How does a water utility operator know how well his or her system is performing? The AWWA Water Loss Control Committee provided the following table to assist water utilities is gauging an approximate Infrastructure Leakage Index (ILI) that is appropriate for their water system and local conditions. The lower the amount of leakage and real losses that exist in the system, then the lower the ILI value will be. Note: this table offers an approximate guideline for leakage reduction target-setting. The best means of setting such targets include performing an economic assessment of various loss control methods. However, this table is useful if such an assessment is not possible. ### General Guidelines for Setting a Target ILI (without doing a full economic analysis of leakage control options) | (Without doing a full economic analysis of leakage control options) | | | | | | |---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Target ILI Range | Financial Considerations | Operational Considerations | Water Resources Considerations | | | | 1.0 - 3.0 | Water resources are costly to develop or<br>purchase; ability to increase revenues via water<br>rates is greatly limited because of regulation or low<br>ratepayer affordability. | Operating with system leakage above this level would require expansion of existing infrastructure and/or additional water resources to meet the demand. | Available resources are greatly limited and are very difficult and/or environmentally unsound to develop. | | | | >3.0 -5.0 | Water resources can be developed or purchased at reasonable expense; periodic water rate increases can be feasibly imposed and are tolerated by the customer population. | Existing water supply infrastructure capability is sufficient to meet long-term demand as long as reasonable leakage management controls are in place. | Water resources are believed to be sufficient to meet long-term needs, but demand management interventions (leakage management, water conservation) are included in the long-term | | | | >5.0 - 8.0 | Cost to purchase or obtain/treat water is low, as are rates charged to customers. | Superior reliability, capacity and integrity of the water supply infrastructure make it relatively immune to supply shortages. | Water resources are plentiful, reliable, and easily extracted. | | | | Greater than 8.0 | Although operational and financial considerations may allow a long-term ILI greater than 8.0, such a level of leakage is not an effective utilization of water as a resource. Setting a target level greater than 8.0 - other than as an incremental goal to a smaller long-term target - is discouraged. | | | | | | Less than 1.0 | If the calculated Infrastructure Leakage Index (ILI) value for your system is 1.0 or less, two possibilities exist. a) you are maintaining your leakage at low levels in a class with the top worldwide performers in leakage control. b) A portion of your data may be flawed, causing your losses to be greatly understated. This is likely if you calculate a low ILI value but do not employ extensive leakage control practices in your operations. In such cases it is beneficial to validate the data by performing field measurements to confirm the accuracy of production and customer meters, or to identify any other potential sources of error in the data. | | | | | ## Public Information Campaign Example Bill Insert and Facebook posts for November 2022 planes contra incendios Test fire plans Pruebe sus Move clocks back Retrase los relojes Change HVAC schedule Update irrigation schedule Actualice sus horarios de riego Save \$ with these Natural Gas **Conservation Tips:** - » Prepare a week's worth of meals to maximize residual oven and stove heat. - » Lower water heater temperature to 120F. - » Use cold water to wash laundry. - » Cover bare floors with rugs or carpets. - » Open window curtains to let the winter sun and heat in during the day (be sure to close them at night). - » Set a thermostat schedule: 68F when home and 62F at night or when away. - » Change HVAC filters monthly during peak usage. A dirty system works harder. - » Clean heating vents and move furniture or drapes if - » Fireplaces: keep damper closed UNLESS a fire is going. 8% of heat loss is straight up the chimney. - » Put your ceiling fan in clockwise to distribute heat. - Replace lighter curtains with thicker drapes during colder months - » Seal air leaks around doors, windows, behind outlets, around plumbing (through floors and cabinets). - » Insulate (properly)! Start with hot water pipes and water heaters, move to the attic, then look at crawlspaces/basements. - » Replace with more efficient gas appliances. ### Ahorre \$ con estos consejos - de conservación de gas natural: » Prepare comidas para toda la semana a fin de maximizar el calor residual del horno y la estufa. - Reduzca la temperatura del calentador de agua a 120 °F (50 °C). - Lave su ropa con agua fría. - Cubra los pisos expuestos con alfombras o tapetes. - Abra las cortinas para dejar entrar el sol y calor del día durante el verano (recuerde cerrarlas por la noche). - Programe un horario en su termostato: 68 °F (20 °C) cuando esté en casa y 62 °F (17 °C) por las noches o cuando salga - Cambie los filtros de su sistema de calefacción y aire acondicionado cada mes durante los períodos de más uso. Un sistema sucio consume más energía. - Limpie los respiraderos de la calefacción y mueva los muebles o las persianas que los cubran. - Chimeneas: mantenga el regulador cerrado A MENOS que tenga un fuego encendido. El 8% del calor perdido sale directamente por la chimenea. - Ajuste la rotación de su ventilador de techo a favor de las agujas del reloj para distribuir el calor. - Reemplace las cortinas ligeras con otras más gruesas durante los - Selle las fugas de aire alrededor de puertas y ventanas, detrás de tomacorrientes, alrededor de tuberías (a través de pisos y - ¡Aplique aislamiento (correctamente)! Comience con las tuberías de agua caliente y los calentadores de agua, continúe con el ático y luego vea el sótano o el espacio debajo de la casa. - Reemplace los aparatos a gas con modelos más eficientes. Where is your gas going? ### Jemez y Sangre Regional Water Plan Project Updates Reference Appendix 8-A of the Regional plan, pages 1 and 2 for correlated project worksheets. | 15 | 12 | 10 | 9 | 1 | Jys<br>ID | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------| | New Bay<br>Non-Potable<br>Water Tank | White Rock WRRF (aka. White Rock Wastewater Treatment Plant) | Ski Basin Water<br>Supply (aka.<br>Jemez Mountain<br>Fire Protection<br>Project, aka.<br>Camp May Wa-<br>terline Project) | Otowi Well #2<br>(Pajarito Well #6) | Otowi Well #2<br>(Pajarito Well #6) | Project Name | | The project will construct a new 833,000 gallon steel storage tank adjacent to the existing Bayo Booster Station. The new tank will allow expansion of non-potable water use in Los Alamos. | Design - The project will completely replace the existing trickling filter plant which was constructed in 1965. The new reclamation facility will include a new headworks, oxidation ditch, secondary clarifiers, ultra-violet disinfection, filtration and sludge digesters. | Install a new 500,000 gallon tank, four booster stations and 23,000 feet of 8" waterline along West Jemez Road and Camp May Road to convey potable water to the Pajarito Ski Lodge area for domestic use, fire protection and snow making. | Design & Environmental – design build for the permitting, drilling and development of the new well. | Construction – construction of the new well house, electric gear, site improvements and equipping with pump/motor. | Project Description | | Phase I -<br>\$590,000<br>Phase II -<br>\$3,200,000 | Design - 2.3<br>million | \$11,000<br>(estimated) | \$4,500,000 | Design<br>\$240,000<br>Construction<br>\$3,700,000 | Cost | | Phase I<br>WTB Grant –<br>60%<br>WTB Loan –<br>40%<br>Phase II<br>WTB Grant –<br>60%<br>WTB Loan –<br>40% | CWSRL | \$2 million –<br>County<br>\$9 million<br>-Grant/private | DPU CIP | Design<br>DPU CIP<br>Construction<br>-DWSRL | Funding<br>Source | | Phase I ongoing, completion January 2023. Phase II Construction Summer & Fall 2023 | Complete 2020 | April 2013 Legislature approved special appropriations Grant for \$375,000 October 3, 2014 Grant agreement executed \$375,000 September 2, 2015 RFP Issued Design/Environmental docs. December 2, 2015 Design/Environmental Contract Executed March 1, 2018 USFS NEPA Scoping Meeting – Public Meeting UNMLA June 6, 2018 USFS NEPA Scoping Meeting – Public Meeting UNMLA June 6, 2019 April 11, 2019 AC Easement Request to LANL #1 March 2, 2022 USFS Decision Notice FONSI Issued March 25, 2022 DOE FONSI Issued April 4, 2022 LAC Easement Request to LANL #2 Construction start – Dependent on funding | Complete July 2019 | Ongoing, Completion Spring 2023 | Schedule / Status | | 19<br>22<br>23 &<br>27 &<br>28 | 17 | JyS<br>ID | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------| | 80 | | | | Canyon Road Sewer Aspen School Area Phase I (aka. 33 <sup>rd</sup> & 34 <sup>th</sup> Street utility Upgrade Projects) Los Alamos Wastewater Treatment Plant Filtration Process Barranca Mesa | White Rock<br>WRRF (aka.<br>White Rock<br>Wastewater<br>Treatment Plant) | Project Name | | Replace failing sections of vitrified clay sewer lines beneath and crossing Canyon Road The project will replace aged and failing waterlines in the 33 <sup>rd</sup> and 34 <sup>th</sup> Streets in the vicinity of Aspen School. Install a new filtration process and building to filter effluent. Filtering the effluent will improve the water quality increasing the effluent classification to Class 1A – the highest achievable. Class 1A effluent can be used in more applications and locations. | Construction - The project will completely replace the existing trickling filter plant which was constructed in 1965. The new reclamation facility will include a new headworks, oxidation ditch, secondary clarifiers, ultra-violet disinfection, filtration and sludge digesters. | Project Description | | \$385,000<br>\$1,000,000<br>\$1,000,000<br>Design -<br>\$200,000<br>Construction<br>\$3,400,000<br>\$1,300,000 | Construc-<br>tion – \$27.7<br>million | Cost | | DPU CIP DPU CIP Design - CIP Construction \$2,190,000 WTB Grant \$1,460,000 WTB Loan ARPA - | CWSRL | Funding<br>Source | | Completed August 2022 Construction summer 2023, Completion Fall 2023 Ongoing, completion summer 2023 Construction Summer 2023, Completion Fall 2023. | Construction Completion Fall 2023. | Schedule / Status | #### INCORPORATED COUNTY OF LOS ALAMOS ADMINISTRATIVE PROCEDURE GUIDELINE Index No. 0030 Effective: May 15 2013 #### **ENERGY CONSERVATION POLICY** #### Purpose County Council adopted an Environmental Sustainability Initiative that states: "By incorporating a value of environmental sustainability into County activities there is an opportunity to lead by example, control costs, inspire community and staff, and preserve the environment for times generations." Adopting a policy that creates a uniform energy conservation approach will help Los-Alamos County reduce electricity and natural gas usage, thereby enabling the County to seize these opportunities. #### Respons≥ilty All County Department Directors are responsible for the administration and enforcement. of this policy for their Department. All employees are responsible for adherence to the policy. Specific departmental needs will dictate actual application of the policy. #### III. Procedure - A. It is the responsibility of all County employees to be proper stewards of County resources, which includes our consumption of energy in the course of fulfilling our mission. Adopting a uniform energy conservation approach will help control costs. and spread awareness about the need for protecting our finite resources. The following areas and practices are examples where employees should be mindful of how we consume energy in the course of completing our work. The list is not meant. to be exhaustive but rather reliests examples of common energy consumption areas. found in the work of the County. - Office Equipment and Appliances: - Computers and peripherals should be turned off at night and or weatherds. when and in the - 2. During operating hours display properties and power options for computers. should be set as to lows: - Attendors automatically shut off after 10 minutes of mactivity. - b. CPU to activate sleep mode after 30 minutes of inactivity. - 3. No dual monitors shall be permitted in County factness, unless deemed. necessary for efficiently accomplishing lasts. - 4. No office destrop perhets shall be demilified in County fabilities, unless required for the frequent printing of confidential documents. - No personal office refrigerators or cooking devices (i.e. microwaves, hat plates) etc.) shall be permitted in County fact ties. #### C. Lighting - 1. Lights to all building areas and workspaces will not be turned on unless. resdec. - Lights in all puliding areas and workspaces will be turned off when not in use. - During caylight nours at eitherer igns will be off. - 4. Exterior lightering will be used only when the building or facilities are occupied, an essithe lighting is for security purposes. - 5. Nuchtime security inhand will be minimized to a level that is apequate to reasonably protect the building and lacknes. #### D. Heating and Cooling - Doors and wholevs at day facilities and tibe kept closed when ut izing heating. or pooring - 2. In accordance with the American Scoolly of Healing, Reingeration, and Air Conditioning Engineers (ASHRAE) recommended standards for thermal comfort, during working flours occupied facilities shall neve their thermostatisst. between 66 and 75 degrees during the healing season and between 73 and 79. decrees during the cooling season - Night-time settings for heating and cooling should be at ized in all applicable. - 4. No portable space heaters shall be permitted in properly climate controlled. areas ### Sources Referenced WateReuse https://watereuse.org/ Bureau of Business & Economic Research Population Pyramid https://bber.unm.edu/data/counties?county=LosAlamos Census Data: https://www.census.gov/quickfacts/losalamoscountynewmexico https://data.census.gov/cedsci/profile?g=0500000US35028 Census Housing Data https://data.census.gov/cedsci/table?g=0500000US35028&tid=ACSDP5Y2019.DP04&moe=false Community Solar https://www.nm-prc.org/utilities/community-solar/ Drought Map https://droughtmonitor.unl.edu/CurrentMap/StateDroughtMonitor.aspx?NM Energycodes.gov https://www.energycodes.gov/status/states/new-mexico https://www.rld.nm.gov/wp-content/uploads/2021/08/14.7.9-NMAC-NMCECC.pdf Energy Grid Modernization Roadmap https://perma.cc/MX25-CYFE Energy Transition Act https://www.dws.state.nm.us/ETA#:~:text=The%20ETA%20sets%20a%20statewide,rural%20electric%20 cooperatives%20by%202050. https://www.nmlegis.gov/Sessions/19%20Regular/bills/senate/SB0489. Geologic Map of Los Alamos https://geoinfo.nmt.edu/publications/maps/geologic/ofgm/downloads/55/OFGM-55\_Guaje Mountain.pdf Geologic Map of White Rock . https://geoinfo.nmt.edu/publications/maps/geologic/ofgm/downloads/149/OFGM-149\_WhiteR ock.pdf Industrial Revenue Bond Act https://perma.cc/MX25-CYFE Intergrated Resource Plan Report for Los Alamos County, 2017 LANL Employee Projections https://discover.lanl.gov/publications/connections/2021-december/director-public-meeting#:~:text=The%20Laboratory%20budget%20for%202022,to%202%2C000%20employees%20in%20FY2022 Long-Range Water Supply Plan Los Alamos County, 2017 Los Alamos Climatology 2021 Update, LANL, 2021 Los Alamos County Comprehensive Plan, 2016 Los Alamos County Non-Potable Water System Master Plan, 2013 Los Alamos Environmental Sustainability Plan, 2017 Los Alamos Resiliency, Energy and Sustainability Task Force Final Report, 2022 New Mexico Climate Change Report 2020 Geospatial and Population Studies Population Projections http://gps.unm.edu/pru/projections Solar tax credit https://www.emnrd.nm.gov/ecmd/tax-incentives/solar-market-development-tax-credit-smdtc/ Smart Energy Provider https://www.publicpower.org/smart-energy-provider Voice of Customer Survey https://www.losalamosnm.us/common/pages/DisplayFile.aspx?itemId=18419823